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A Brief Guide for Using ADMATTM 2.0 Professional 
 

© 2009-2013 Cayuga Research 

 

 

This guide provides an introduction to the use of ADMAT 2.0 Professional (henceforth referred to as 

ADMAT). Please consult our User’s Guide for a detailed discussion on the full spectrum of 

functionalities and usage of ADMAT. 

 

ADMAT belongs to an “operator overloading” class of automatic differentiation tools and uses object-

oriented programming features in MATLAB. Thus, ADMAT requires MATLAB 6.5 or above. 

 

1. Installation of ADMAT 
 

1.1 Installation Instructions for Windows Users 
 

ADMAT is provided in a zip file ADMAT-2.0.zip. Place the zip file in a proper directory and unzip it. 

There are two methods for setting the MATLAB search paths for ADMAT. 

 

Method 1: 

 

1. Click “File” in MATLAB window. 

2. Choose the “Set Path” option. 

3. Click the “Add with Subfolders” button. 

4. Find the directory for ADMAT in the “Browse for Folders” window and click “OK”. 

5. Click the “Save" button to save the paths for ADMAT and click the “Close” button. 

6. Type “startup” at the MATLAB prompt or exit MATLAB and re-start MATLAB. 

 

Method 2: 

 

1. Access the ADMAT directory.  

2. Edit the startup.m file to add all subdirectories of ADMAT to the MATLAB search path 

manually.  

3. Type “startup” at MATLAB prompt to set up the paths for ADMAT. 

 

If there is a “success” message, ADMAT is correctly installed. 

 

1.2 Installation Instructions for Unix or Linux Users 
 

Unzip ADMAT-2.0.zip using “unzip ADMAT-2.0.zip” at the Unix or Linux prompt. Then follow 

Method 2 described above. 

 

2. Computation of Gradients, Jacobians, and Hessians 
 

2.1 Computing Gradients 
 

Compute the gradient of the Brown function. Please refer to Section 3.1 of the User’s Guide for a 

definition of the Brown function. 

 

1. Set the problem size n, where n is the number of independent variables. 
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>> n = 5; 

 

2. Set the Brown function as the function to be differentiated. 

 

>> myfun = ADfun('brown', 1); 

 

The second input argument in ADfun, ‘1’, is a flag indicating that the function to be differentiated is a 

scalar mapping 𝑓: 𝑅𝑛 → 𝑅1; more generally, the second input argument is set to ‘m’ for a vector-

valued function, 𝑓: 𝑅𝑛 → 𝑅𝑚. 

 

3. Initialize the independent variable x. 

 

>> x = ones(n,1); 

 

4. Call feval to get the function value and the gradient of the Brown function, allowing ADMAT to 

decide whether the forward mode or the reverse mode is used. By default, ADMAT uses reverse 

mode to compute the gradients. For more on “modes”, please consult our User’s Guide. 

 

>> [f, grad] = feval(myfun, x)  

 

f =  

8 

grad =  

4  8  8  8  4 

 

Note that the gradient “grad” is a row vector. 

 

2.2 Computing Jacobians 
 

Compute the Jacobian of the Broyden function. Please refer to Section 3.2 of the User’s Guide for a 

definition of the Broyden function. 

 

1. Set the problem size n, where n is the number of independent variables. 

 

>> n = 5 

 

2. Set the Broyden function as the function to be differentiated.  

 

>> myfun = ADfun('broyden', n); 

 

Note that the Broyden function is a vector-valued function which maps 𝑅𝑛 to 𝑅
𝑛. Thus, the second 

input argument in ADfun is set to n corresponding to the number of independent variables (i.e. the 

column dimension in the Jacobian). 

 

3. Initialize the independent variable x. 

 

>> x = ones(n,1); 

 

4. Call feval to compute the function value and the Jacobian matrix at x.  
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>> [F, J] = feval(myfun, x) 

F =  

   0   

  -1   

  -1  

  -1  

   1 

 

J =  

   -1    -2     0     0     0 

   -1    -1     -2    0     0  

   0     -1    -1    -2     0   

   0     0     -1    -1    -2   

   0     0     0     -1    -1 

 

In the above example, we have shown how to compute a square Jacobian matrix. In the following we will 

illustrate how to compute a rectangular Jacobian matrix. We choose the Variably Dimensioned Function 

(VDF) from the More-Garbow-Hillstrom collection as an example. The VDF function mapping 𝑅𝑛 to 

𝑅𝑛+2 is defined in an M-file “VDF.m” as follows. 

 
function y = VDF(x, Extra) 

 

n = length(x); 

y = zeros(n+2,1); 

y(1:n) = x-1; 

 

tmp = 0; 

for i=1:n 

   tmp = tmp+i*(x(i)-1); 

end 

 

y(n+1) = tmp; 

y(n+2) = tmp^2; 

 

 

1. Set the problem size n, where n is the number of independent variables. 

 

>> n = 5 

 

2. Set VDF as the function to be differentiated.  

 

>> myfun = ADfun('VDF', n+2); 

 

3. Initialize the independent variable x. 

 

>> x = ones(n,1); 

 

4. Call feval to compute the function value and the Jacobian matrix at x.  

 

>> [F, J] = feval(myfun, x)  

 

F =  

     0   
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     0   

     0  

     0  

     0 

 

J =  

           1     0     0     0     0 

           0     1     0     0     0 

           0     0     1     0     0 

           0     0     0     1     0 

           0     0     0     0     1 

           1     2     3     4     5 

           0     0     0     0     0 

 

2.3 Computing Gradients and Hessians 

 

Compute the gradients and Hessians of the Brown function. 

 

1. Set the problem size n, where n is the number of independent variables. 

 

>> n = 5; 

 

2. Set the Brown function as the function to be differentiated. 

 

>> myfun = ADfun('brown', 1); 

 

3. Initialize the independent variable x. 

 

>> x = ones(n,1); 

 

4. Call feval to get the function value, gradient and Hessian of the Brown function at point x. 

 

>> [f, grad, H] = feval(myfun, x)  

 

f =  

8 

grad =  

4  8  8  8  4  

H =  

  12    8    0    0     0 

  8    24    8    0     0   

  0     8   24    8     0   

  0     0    8   24     8   

  0     0    0    8    12 

 

The function to be differentiated is specified in an M-file. The interface of the function must contain just 

one output argument and exactly two input arguments. For example, 

 

y = FOO(x, Extra), 
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where y is the only output, x is the independent variable and Extra is a MATLAB cell structure which 

stores all remaining parameters required by the function FOO. If a function to be differentiated requires 

just one input parameter, Extra can be omitted or Extra can be assigned the empty array, ‘[  ]’. An 

example for illustrating the use of Extra can be found in Section 3.1 of the User’s Guide. 

 

3. Sparse Jacobian and Hessian Computation 

 
If Jacobians (or Hessians) are sparse and they are evaluated many times at different points, users can use 

the graph coloring technique implemented in ADMAT to accelerate the Jacobian or Hessian computation. 

 

3.1 Sparse Jacobian Computation 
 

Compute the Jacobian matrix of an arrowhead function. Please see Example 4.1.1 in Section 4.1 of the 

User’s Guide for the definition of arrowhead function. The procedure to evaluate the Jacobian J of the 

arrowhead function at point 𝑥 = [1 1 1 …  1 1]′ is as follows. 

 

1. Set the problem size n, where n is the number of independent variables. 

 

>> n = 500; 

 

2. Initialize the independent variable x. 

 

>> x = ones(n,1); 

 

3. Compute the sparsity information of the Jacobian matrix of the arrowhead function and store it in JPI.  

 

>> m = length(arrowfun(x)); 

>> JPI = getjpi('arrowfun', m); 

 

4. Compute the function value and the Jacobian matrix (in MATLAB sparse format) of the arrowhead 

function at point x based on the computed sparsity information stored in JPI. The input argument ‘Extra’ 

is set to ‘[ ]’ since it is empty.  

 

>>  [F, J] = evalj('arrowfun', x, [], n, JPI)  

F =  

502   

      2   

      2  

2  

      2 

      : 

      : 

J = 

   (1,1)        6 

   (2,1)        2 

   (3,1)        2 

   (4,1)        2 

   (5,1)        2 

   (6,1)        2 

      :            : 
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      :            : 

 

 

3.2 Sparse Hessian Computation 
 

Compute the Hessian of the Brown function at point 𝑥 = [1 1 1 …  1 1]′. 
   

1. Set the problem size n, where n is the number of independent variables. 

   

  >> n = 500;  

   

2. Set the independent variable x.   

   

>>   x = ones(n,1); 

 

3. Compute the sparsity information of the Hessian of the Brown function and store it in HPI. 

   

>>  HPI = gethpi(‘brown’, n); 

 

4. Compute the function value, gradient and Hessian of the Brown function at point x based on the 

computed sparsity information stored in HPI. The input argument ‘Extra’ is set to ‘[ ]’ since it is empty.    

   

>>   [v, grad, H] = evalh(‘brown’, x, [], HPI) 

 

v =    

       998 

 

grad =    

      4    8   8   .....  8   4  

 

H = 

 

   (1,1)       12 

   (2,1)        8 

   (1,2)        8 

   (2,2)       24 

   (3,2)        8 

   (2,3)        8 

   (3,3)       24 

   (4,3)        8 

   (3,4)        8 

   (4,4)       24 

   (5,4)        8 

   (4,5)        8 

   (5,5)       24 

      :           : 

      :           : 
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4. Advanced Features of ADMAT 

 
ADMAT provides users with additional functionalities -- forward mode AD and reverse mode AD so that 

derivative can be computed with even greater flexibility and ease. 

 

4.1 Forward Mode AD 

 
Using the forward mode AD provided in ADMAT, a user can easily compute the first derivatives of 

functions that are defined using arithmetic operations and intrinsic functions of MATLAB. Furthermore, 

the forward mode AD provides users with greater flexibility than just using feval. Users can define their 

own MATLAB functions as usual. There is no restriction on the number of input arguments a user-

defined function may have. If there is more than one input argument, the derivative with regard to any 

input argument can be computed by the forward mode AD without any change to the function definition.  

 

In this section, we will give an example on the use of the forward mode AD for computing the Jacobian 

matrix of Broyden function at point 𝑥 = [1 1 1]. 
   

1. Create a deriv class object. 

 

>>   x = deriv([1,1,1], eye(3)) 

 

     val =    

             1   1   1   

    deriv =     

             1     0     0      

             0     1     0      

0 0     1      

 

2. Evaluate the Broyden function at point x.  

 

>>   y = broyden(x)    

 

val =    

       0    -1    1     

deriv =    

-1    -2    0     

-1    -1   -2  

0 -1   -1   

 

3. Get the value of the Broyden function at point x.  

 

>>  yval = getval(y)   

 

    yval =  

             0    -1    1   
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4. Get the Jacobian matrix of the Broyden function at point x. 

 

>>  J = getydot(y) 

 

      J =  

         -1   -2    0  

     -1   -1   -2  

          0   -1   -1   

 

4.2 Reverse mode AD 
 

The reverse mode AD provided in ADMAT uses a virtual tape to record all the intermediate values and 

operations performed in the function evaluation. Computation starts from the end of the tape, a 

MATLAB global variable is used to go backward through the tape. The computed derivative is finally 

recorded at the beginning of the tape. In this section, we will give an example of computing the first order 

derivative by the reverse mode AD. 

 

The following example shows how to compute the transpose of the Jacobian matrix
TJ of the Broyden 

function at point 𝑥 = [1, 1, 1] by using the reverse mode AD. 

   

1. Create a derivtape class object. 

   

>>   x = derivtape([1,1,1], 1) 

 

val =   

       1  1  1    

varcount =    

      1   

  

2. Evaluate the Broyden function at point x. 

   

>>   y = broyden(x)    

 

val =   

      0     

     -1     

      1 

varcount =    

     40   

  

3. Get the value of the Broyden function at point x. 

   

>>   yval = getval(y) 

 

yval =    

       0     

      -1     

       1 
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4. Get the transpose of the Jacobian of the Broyden function at point x.  

   

  >>   JT = parsetape(eye(3))  

 

JT =    

    -1    -1     0    

    -2    -1    -1    

0 -2    -1 

   

 

5. Troubleshooting 

 
Below we list several potential problems that may occur in the use of ADMAT. 

 

1. Conversion to double from deriv is not possible. 

   

This usually means a deriv class object is assigned to a double class variable. Check both sides of the 

assignment statement and make sure that they are of the same data type. 

 

2. Error using ==> XXX   

  

Function XXX has not been defined for variables of class deriv. A number of MATLAB functions have 

not been overloaded in ADMAT yet. Please contact Cayuga Research for extending ADMAT to the 

MATLAB functions of your interest. 

 

3. Undefined function or variable deriv  

   

ADMAT has not been installed yet. Please make sure that ADMAT is properly installed. 

 

4.  Error using ==> deriv/deriv      

ADMAT detects a possible license error. Please restart ADMAT.  

 

5. The ADMAT 2.0 license has expired. Please contact Cayuga Research for a license extension. 

   

6. Do not use MATLAB command clear all to clear your workspace while using ADMAT. This would 

remove all ADMAT global variables from memory: unpredictable errors may then occur. Instead, use 

clear selectively as needed. 

  

7. ADMAT 2.0 only performs 1-D and 2-D matrix operations. In other words, it cannot perform 3-D or 

higher-dimension operations.  

 

8. The computed derivatives are incorrect. Please check the following issues. 

 

 The command clear all should not be called while using ADMAT. 

 The data type of the dependent variable must be consistent with that of the input independent 

variable in a user-defined function (See Section 3.4 in the User’s Guide for details). 

   

Finally, if there is still a problem persists, please contact Cayuga Research for assistance. 


