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Abstract

This paper assesses the strength of productivity spillovers nonparametrically in a data set
of 12 industries and 231 NUTS2 regions in 17 European Union member countries be-
tween 1992 and 2006. It devotes particular attention to measuring the catching up through
spillovers depending on the technology gap of a unit to the industry leader and the lo-
cal human capital endowment. We find evidence of a nonlinear relationship between the
technology gap to the leader as well as human capital and growth in logs. Spillovers are
smallest for units with a medium-high technology gap to the leader, especially for regions
where human capital endowments are low.

I. Introduction

A large body of empirical work in macroeconomics emphasizes the role of total factor pro-
ductivity (TFP) spillovers through knowledge diffusion for catching up and convergence.
Nelson and Phelps (1966) suggested that the extent of knowledge spillovers depends on
two factors, the distance to the technological frontier (the technology gap) and an economic
unit’s knowledge stock or human capital endowment. There is now broad evidence on the
importance of either one of the two for catching up and convergence. Virtually all of this
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evidence assumes a parametric if not a (log-)linear relationship between spillovers and TFP
growth. Little is known about the appropriateness of this assumption and the actual form
of the relationship.

For instance, Benhabib and Spiegel (1994) identified two roles of human capital levels
for economic growth in a large cross section of countries in 1965–85: for steady-state
growth of TFP and for catching up, i.e. the absorption of spillovers from the technology
leader. Griffith, Redding and Van Reenen (2004) assessed the determinants of TFP growth
in a panel of OECD countries and manufacturing industries in 1974–90. Their findings
suggest that human capital as well as R&D levels affect TFP growth and convergence.
Kneller and Stevens (2006) found further support along those lines in a panel of industries
and OECD countries in 1973–91, though suggesting that human capital was more robust
a driver of spillovers than R&D in their data.1 Cameron, Proudman and Redding (2005),
using data on productivity in UK manufacturing industries, show that international trade
is another key factor – beyond absorptive capacity – in facilitating technology transfer. In
all of the just-mentioned work, a parametric relationship between catching up and human
capital was assumed.

The goal of this paper is to apply nonparametric rather than parametric estimation
techniques in assessing the functional form of the relationship between the technology gap
and human capital for TFP growth and catching up. This is accomplished in a panel data
set on 231 NUTS2 subnational regions (of 17 European Union member countries) and 12
industries over the period 1992–2006.2 The findings are aligned with ones in earlier work
to the extent that the speed of convergence is positively related to the size of the TFP gap on
average, and that the speed of convergence towards the TFP leader is positively related to a
unit’s level of human capital on average.Yet, the nonparametric evidence reveals large areas
in technology-gap and human-capital-endowment space where monotone convergence is
absent and some regions with an intermediate gap to the leader do not benefit from the
gap, e.g. due to an absence of absorptive capacity. Standard, monotone convergence in TFP
growth to the industry leader as suggested by earlier, parametric work applies only to part
of the region–industry units in the data.

The nonparametric estimator explains the lion’s share of the variation in the data on
TFP growth, while the explanatory power of the parametric estimator is relatively small.
Moreover, the nonparametric estimator reveals a much greater variance in the marginal
effect of human capital across regions and industries than the parametric estimator. Hence,
allowing for flexible functional forms when assessing convergence processes and spillovers
appears desirable and turns out to be qualitatively and quantitatively important. There
are also systematic differences between the parametric and the nonparametric gradient
functions of TFP growth with respect to the TFP gap to the industry leader and with respect
to the human capital stock. In particular, the parametric estimator tends to overestimate
the role of TFP gaps for regions with a medium-sized technology gap to the leader while it

1
At the level of the firm, Griffith, Harrison and Van Reenen (2006) found evidence in support of R&D as a

key determinant of catching up in TFP growth. Along different lines, the studies by Coe and Helpman (1995) and
Coe, Helpman and Hoffmaister (1997) emphasized the role of international trade and foreign direct investment as
transmission channels of international R&D spillovers (see Keller, 2004, for a survey of this and related work).

2
NUTS2 is a classification adopted by the statistical office of the European Union, Eurostat. It refers to regions of

a size of 0.8–3 million inhabitants all over the European Union.
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tends to underestimate it for relatively small and relatively large gaps. Overall, and unlike
the parametric estimator, the nonparametric estimator suggests a varied pattern regarding
the role of human capital for TFP growth and catching up.

The remainder of the paper is organized as follows. Section II introduces the data
and measurement issues. Section III outlines a flexible nonparametric empirical model of
productivity growth and discusses the results. Section IV concludes with a summary of the
key findings.

II. Data

The empirical analysis in this paper involves two types of variables, one relating to TFP (a
region’s gap to the industry leader in an initial period as well as its average annual growth)
and one relating to human capital endowments. Since TFP is not observed directly, we
follow Griffith et al. (2004) for measurement.

Construction of TFP indices

Define � ln Yit ≡ ln Yit − ln Yit−1 as the log change in region–industry pair i’s value added in
real terms between periods t −1 and t, � ln Lit ≡ ln Lit − ln Lit−1 as the log change in labour,
� ln Kit ≡ ln Kit − ln Kit−1 as the log change in capital stock, and �̃it ≡0.5(�it +�it−1) as the
average cost share of labour in value added in periods t and t −1. In particular, the cost share
of labour is measured by the ratio of the wage sum and gross value added in region–industry
pair. Then, the log change in i’s TFP can be defined on the basis of a translog-production-
technology-based superlative index (see Caves, Christensen and Diewert, 1982, p. 81) as3

TFP growthit ≡� ln Ait =� ln Yit − �̃it� ln Lit − (1− �̃it)� ln Kit. (1)

Use ln V̄ it to denote the geometric mean of a generic variable ln Vit within an industry
and a year across all regions,4 D ln Vit ≡ ln Vit − ln V̄ it to denote i’s deviation from ln V̄ it

in the same industry and year t, ln vit ≡D ln V *
it −D ln Vit to denote the difference between

the sector-year specific technology leader (*) and unit i in D ln Vit , and �it ≡0.5(�it + �̄it).
Then, we may define

TFP gapit ≡ ln ait = ln yit −�it ln lit − (1−�it) ln kit. (2)

3
The translog production function represents a second-order approximation to a nonparametric production function.

This is the main reason behind the large volume of academic work on technology and catching up in macroeconomics,
international economics, and industrial organization which employs the superlative total-factor-productivity index
based on Caves et al. (1982) as used here. An entirely different approach to determine technology in terms of a
gap to the frontier is the one of nonparametric or semi-parametric stochastic-frontier analysis (see, e.g. Simar and
Wilson, 2007). We resort to the former approach here, as the present paper is focused on the estimation of features
of the technology gap to the leader by nonparametric methods rather than nonparametric estimation of that gap per
se. From the viewpoint of inference, it would be relatively demanding to adopt a two-step approach based on fully
nonparametric estimates in both steps, the one determining the technology gap and the one assessing the determinants
of its growth.

4
Note that ln V̄ it carries an index i since i refers to region–industry pairs and the geometric mean is industry

(-year)-specific.
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Hence, information on the cost share of labour in value added, �it , on value added in
real terms, Yit , on employment, Lit , and on the capital stock, Kit is required to measure
TFP growthit and TFP gapit .

Data sources

Information about �it , Yit , Lit , and Kit is based on data from Cambridge Econometrics. Lit

and Yit are measured directly with 2006 being the base year for the deflator. Kit is calculated
by using the perpetual inventory method, using data on gross fixed capital formation, Iit ,
assuming a depreciation rate of 6%, � = 0.06, and an initial capital stock of Ki,1991 =∑1985

t=1980 Iit , so that Kit = (1−�)Ki,t−1 + Iit for all t =1992,…, 2006.5 As in Harrigan (1997)
and Griffith et al. (2004), we exploit the properties of the translog production function
(which may be viewed as a second-order approximation to a nonparametric production
technology) to smooth region-industry specific labour shares �it , which are obtained as
predicted values of a regression of the observed labour shares on a country-industry-specific
fixed effect and the log of the capital–labour ratio, whose parameter is industry-specific.
Data on regional human capital stocks Hit as one measure of absorptive capacity are based
on the European Union’s Labour Force Survey and the European Values Study. We employ
information on the share of workers with at least secondary education which varies across
NUTS2 regions, but not across industries. Overall, we have data for 10 industries across
231 regions and 15 years such that our estimates correspond to n=34, 650 observations.6

III. Empirical framework

Total factor productivity growth and convergence

A general, nonparametric catching-up process for TFP growth of the region–industry pair
i at time t in the spirit of Benhabib and Spiegel (1994) and Griffith et al. (2004) may be
formulated as

� ln Ait =m(Xit)+uit , where Xit = (Hit−1, ln ait−1, X d
it ), (3)

where X d
it is a vector of categorical variables in order to allow for fixed effects in three

dimensions – regions, industry and time – along the lines of Racine and Li (2004).7 Of
course, the process in equation (3) is not consistent with unconditional convergence in
general: there will be convergence to the same steady state only as long as � ln Ait increases
monotonically with the technology gap, ln ait−1, and as long as fixed effects are absent,
which should not be expected to generally hold empirically; moreover, there will be uniform
convergence to the region-industry-i-specific steady state in year t across the i and t only as

5
Others such as Leamer (1984) or Harrigan (1999) assume a much higher rate of depreciation of around 15%.

However, the results reported below are largely insensitive to using this value instead of one of 6%.
6
Our data set covers the following industries following the NACE classification: Food, beverages and tobacco;

Textiles and leather etc.; Coke, refined petroleum, nuclear fuel and chemicals etc.; Electrical and optical equipment;
Transport equipment; Other manufacturing; Hotels and restaurants;Transport, storage and communications; Financial
intermediation; Real estate, renting and business activities.

7
See also the references in Li and Racine (2007) as well as section 11.3.2 in Henderson and Parmeter (2015) on

this issue.

© 2019 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



772 Bulletin

long as � ln Ait increases monotonically with ln ait−1. This paper’s main interest is to reveal
the functional form of m(Xit), to contrast the findings with a parametric form as assumed
in earlier work, and to outline conclusions for economic policy and future research. We
acknowledge that human capital at the regional level is an endogenous variable, and thus
we refrain from a causal interpretation of the effects.

Nonparametric estimation of technology spillovers

In this subsection, we are concerned with the specification of m(Xit) in equation (3). We
specify the convergence forces in TFP as a potentially nonlinear function of the technology
gap to the industry leader, ln ait−1, of human capital endowment, Hit−1, and of fixed effects
captured by the categorical variables in X d

it . For this, we employ a multivariate local linear
estimator with an Epanechnikov product kernel for the two continuous variables and the
three categorical variables in Xit with variable-specific bandwidths (see Racine and Li,
2004; Henderson and Parmeter, 2015). Let us use k to index one of the five columns in Xit .
Moreover, let us index all data points (i.e. region–industry–time tuples) by j and denote
the size of the data set by n. Then, the local linear regression model for all units j in the
neighbourhood of unit s in equation (3) may be formalized as

n∑
j=1

{� ln Aj − �s − (Xj −Xs)�s}2
5∏

k=1

Kk

(
Xk ,j −Xk ,s

bk

)
, (4)

where �s is a constant (which is specific to s) and the kernel for the k-th column of Xit

involves a respective optimal bandwidth bk . The prediction of m(Xit) is based on this
smoother whose five optimal bandwidths are chosen from a leave-one-out cross-validation
procedure. Confidence intervals of the local point estimates are computed by following
Racine and Li (2004).8

We also estimate the gradients @ ̂� ln Ait/@ ln ait−1 in H -ln a-space by following Racine
and Li (2004) and, specifically, Hayfield and Racine (2008). For illustration, we utilize

three-dimensional plots of @ ̂� ln Ait/@ ln ait−1 against ln ait−1 and Hit−1.

Results

In this section, we summarize the results of the nonparametric empirical analysis by way
of plots. Three-dimensional plots generally come in two panels, one for the level function
̂� ln Ait (panelA) and one for the gradient function @ ̂� ln Ait/@ ln ait−1 (panel B). In all three-

dimensional plots we display transparent smoothed functions as well as point predictions
using the following indicators to illustrate significance at the 5% level: crosses and circles
for positive and negative values, respectively, and black and grey for statistically significant
(at 5%) and insignificant values, respectively.

8
Chu, Henderson and Parmeter (2017) propose an alternative estimator for discrete variables. While the estimator

of Racine and Li (2004) has a tendency to undersmooth (i.e. select a very small bandwidth with discrete, unordered
regressors) in some data situations, the one of Chu, Henderson, and Parmeter is less prone to that problem. However,
their simulations suggest that the performance of the estimator of Racine and Li (2004) is often similar to theirs. We
will report on the selected bandwidths in the following subsection.
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The nonparametric estimation results illustrated in Figure 1a,b can be summarized as
follows. First, the estimated levels function in Figure 1a is not monotonic. Second, having
a small or a very large technology gap to the leader is best for convergence in general and
independent of human capital endowments. However, with a medium-sized technology
gap, the convergence to the leader is faster, on average, with a high level of human capital
as the technology gap rises.

The relative importance of a technology gap to the industry leader and of human capital
for convergence can be visualized by plotting the fractions of units at certain levels of
a technology gap or human capital where the point estimate for the gradient is positive

and significant. The corresponding fractions for @ ̂� ln Ait/@ ln ait−1 across different levels
of ln ait−1 and Hit−1 are displayed in Figure 2a,b. Again, a positive, statistically significant
TFP-growth gradient is more likely at either a quite small or a very large gap to the leader.

The fraction of positive significant values of @ ̂� ln Ait/@ ln ait−1 is less clearly related to
human capital endowments according to Figure 2b. However, as indicated above, a higher
level of human capital helps regions with a medium-sized technology gap to the leader to
catch up faster and more systematically. The latter is not obvious from Figure 2b, however.9

An analysis of variance of an indicator variable which is unity for observations, which
catch up with the leader in a significantly positive way, and zero else, using region- and
industry-specific indicators reveals the following. First, only about one-twelfth of the vari-
ation in this variable is explained by industry-specific and region-specific indicators, with
the the industry dimension being almost twice as important as the regional dimension.
Overall, there is relatively little concentration of TFP spillovers across specific industries
and even less so across specific regions. The fraction of significantly positive spillovers
varies across industries with values between 0.45 (Transport equipment) and 0.79 (Other
manufacturing) being centred around an average of 0.63 and across regions with values
between 0.41 (Dél-Dunántúl in Hungary) and 0.80 (South Yorkshire in the United King-
dom).

The nonparametric estimates reveal more variation in the role of Hit compared to our
version of a parametric model in the spirit of Griffith et al. (2004). In the parametric model,
� ln Ait is (log-)additive in a constant, Hit−1, ln ait−1, and an interaction Hit−1 ln ait−1. While
such a parametric approach yields for our sample an average marginal effect of about
−0.043 for Hit−1, the fully nonparametric approach predicts one of about 0.058 (i.e. the
sign is different). The standard deviation of the average marginal effect of Hit−1 is 0.023
and 0.034 in the parametric and the nonparametric model, respectively.

The parametric approach (including the region-, sector- and time-fixed effects) explains
about 11.5% of the variation in � ln Ait , while the fully nonparametric framework explains
about 99.9%. The latter could be an outcome of undersmoothing in the fixed-effects di-
mensions. Regarding the latter, let us add the following. First of all, the unordered, discrete
variables capturing the year, sector, and regional indicators contain 15, 12, and 231 cate-
gories, respectively. The respective kernel function for the kth categorical variable depends

9
Notice that the conditional variance on the three dimensions of fixed effects in the human-capital-endowment

variable is small relative to the corresponding unconditional variance. The reason is that human capital endowments
change relatively sluggishly over short time periods. In a model without region-specific fixed effects, the role of
human capital would turn out more clearly positive for catching up and convergence.
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Figure 1. Nonparametric spillovers
Notes: The estimates are based on a sample of 34,650 observations. Panel (a) illustrates the estimates for the
level � ln Ait where we use the following indicators: ‘+’ and ‘o’ for positive and negative values, respectively,
and black versus grey colours for statistically significant (at 5% level) and insignificant values, respectively.
Panel (b) refers to the estimates for the gradient @ ̂� ln Ait /@ ln ait−1, using the same colouring as in panel (a).
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Figure 2. Positive and significant nonparametric spillovers
Notes: Panel (a) plots the fractions of observations within 25 equally sized bins of � ln Ait−1 for which the
nonparametric estimator predicts a significantly positive gradient @ ̂� ln Ait /@ ln ait−1. Panel (b) plots these
fractions against 25 equally sized bins of Hit−1.
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on the smoothing parameter �k . The latter is bounded between 0 and Nk/ (Nk − 1), where
Nk is the number of categories in variable k . With �k = 0 there is no smoothing of the
fixed effects in the respective dimension, while with �k = Nk/ (Nk − 1) there is complete
smoothing. Hence, the closer �k is to zero, the larger is the danger of undersmoothing.
The latter should be particularly an issue with categorical variables pertaining to regional
effects rather than years or sectors, as the number of regional categories is much larger than
the ones of years and sectors are. With the data at hand, �k =0.0039 for years, �k =0.0025
for sectors, and �k =0.4653 for regions. Hence, there is relatively strong smoothing across
regions but less so for years and sectors.

In Figure 3a,b we provide a comparison of the nonparametric and parametric functions
of the TFP-growth levels and gradients, subtracting the nonparametric from the parametric
estimates.10 In those figures we use the same indicators as above for the signs and statistical
significance of estimates.

A close inspection of Figure 3a,b suggests the following. First, the 95%-confidence
intervals of the model predictions of � ln Ait are overlapping between the parametric and
the nonparametric estimates for only about 21% of the observations. Moreover, the 95%-

confidence intervals of the model predictions of the gradient @ ̂� ln Ait/@ ln ait−1 are over-
lapping between the parametric and the nonparametric estimates for about 25% of the ob-
servations. Hence, there is a large degree of stochastic non-overlap between the parametric
and the nonparametric model predictions. Second, in large subspaces in the ln ait−1-Hit−1-
domain of the paper, namely for about 53% of the observations, the nonparametric function
predicts higher levels of TFP growth – consistent with the data – than the parametric one.
We obtain negative deviations, where the parametric estimator predicts higher levels ofTFP
growth than the nonparametric one. The latter occurs mainly for medium-low levels of TFP

gaps. Third, the gradient @ ̂� ln Ait/@ ln ait−1 tends to be biased downwards in the paramet-
ric specifications for about 59% of the observations, while it tends to be systematically
upward biased for about 16% of the observations. The latter is mainly the case for regions
with high levels of human capital endowments. Moreover, following Hsiao, Li and Racine
(2007) we performed a robust consistent nonparametric test about whether the parametric
model is correctly specified. In particular, we test the null hypothesis that the difference
between the data and the parametric conditional expectation is zero almost everywhere.
The importance of a nonparametric model is confirmed by the test which yields a P-value
of 2.22 × 10−16 and thus clearly rejects the parametric specification. Note that this holds
true for a number alternative parametric specifications we tested.

10
The parametric predictions of the TFP-growth levels and gradient functions, respectively, are

̂� ln Ait =−0.030Hit−1 +0.011 ln ait−1 −0.005Hit−1 ln ait−1 +fixed effectsit ,

@̂� ln Ait

@ ln ait−1
=0.011−0.005Hit−1,

where fixed effectsit is a compact representation of the fixed region, sector, and time effects.
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Figure 3. Parametric vs. nonparametric model predictions
Notes: The estimates are based on a sample of 34,650 observations. Panel (a) illustrates the differences of the
parametric and nonparametric model estimates (parametric minus nonparametric) for the level � ln Ait where
we use the following indicators: ‘+’ and ‘o’ for positive and negative values, respectively, and black versus
grey colours for statistically significant (at 5% level) and insignificant values, respectively. Panel (b) refers to
the differences of the parametric and nonparametric model estimates (parametric minus nonparametric) for
the gradient @ ̂� ln Ait /@ ln ait−1, using the same colouring as in panel (a).
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IV. Conclusions

This paper studies the role of the technology gap and absorptive capacity of regions and
industries for catching up. The functional relationship between TFP growth and the tech-
nology gap and human capital endowments features considerable nonlinearities and even
non-monotonicities that can typically not be captured by parametric specifications. The es-
timates suggest that spillover effects from the technological leader are strongest to regions
within an industry where the technology gap is either quite small or sufficiently large, at
least in Europe. For a medium-sized technology gap, we do not identify positive spillovers.
This provides implicit evidence of high levels of absorptive capacity at small technology
gaps to the industry leader and a strong pull effect of technologically leading regions on
ones with a very large technology gap.The nonparametric estimation reveals a much bigger
variation in the role of human capital (absorptive capacity) for growth and convergence than
the conventional, parametric approach. This appears particularly important when thinking
of returns to human capital across regions and industries and the funding of education in
the presence of financial constraints.

Final Manuscript Received: September 2018
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