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The European Union (EU) provides grants to disadvantaged regions of member states

from two pools, the Structural Funds and the Cohesion Fund. The main goal of the

associated transfers is to facilitate convergence of poor regions (in terms of per-capita

income) to the EU average. We use data at the NUTS3 level from the last two EU

budgetary periods (1994–1999 and 2000–2006) and generalized propensity score

estimation to analyze to which extent the goal of fostering growth in the target regions

was achieved with the funds provided and whether or not more transfers generated

stronger growth effects. We find that, overall, EU transfers enable faster growth in the

recipient regions as intended, but we estimate that in 36% of the recipient regions the

transfer intensity exceeds the aggregate efficiency maximizing level and in 18% of the

regions a reduction of transfers would not even reduce their growth. We conclude that

some reallocation of the funds across target regions would lead to higher aggregate

growth in the EU and could generate even faster convergence than the current

scheme does.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

As the budget of the European Union (EU) becomes tighter and major recipients of European regional transfers struggle
with debt crises, questions about the proper utilization and effectiveness of transfers from the central EU budget to
Europe’s poorest regions are hotly debated. Since 1975, when the European Regional Development Fund (ERDF) was
founded, a significant budget has been devoted to the reduction of regional imbalances, especially, in terms of per-capita
income.1 The Treaty of Lisbon which entered into force in 2009 acknowledges regional cohesion as one of the key goals of
the European Union.2
ll rights reserved.
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The Union’s regional policy goals are rooted in the perception that a common market requires a certain degree of
homogeneity in economic development which is not necessarily an automatic outcome of the integration process but,
eventually, has to be assisted by active policy interventions. Accordingly, with the EU enlargements to the south3 and,
more recently, to the east,4 the disparities among the member countries of the Union increased sharply, and so did the
scope of regional transfers. During the years 1975–1988, the ERDF budget represented on average 6.8% of the total
Community budget, while during the current 2007–2013 programming period expenses aimed at cohesion make up 35.7%
of the total Community budget, or 347.41 billion Euros at current prices (see European Commission, 1989, 2008). These
expenses on cohesion policy stem from different funds: the ERDF contributes about 58%, the European Social Fund (ESF)
about 22%, and the Cohesion Fund about 20%. The ERDF and the ESF are commonly referred to as the Structural Funds where
the former focuses on infrastructure investments and the latter on employment measures.5 The Cohesion Fund was
established in the treaty of Maastricht and is intended to support the Structural Funds in strengthening the economic and
social cohesion in the Union. The Cohesion Fund mainly finances environmental projects and trans-European transport
infrastructure networks. In contrast to the Structural Funds, the Cohesion Fund operates on the national rather than the
regional level.6

The heterogeneity of regional transfer intensity – defined as the amount of EU transfers in percent of a target region’s
beginning-of-period GDP – across recipient regions and programming periods is remarkable. Whereas some NUTS3
regions7 received only negligible amounts of EU transfers in the order of less than a thousandth of a percent of their GDP,
others faced a transfer intensity of 29% of their beginning-of period GDP. We will discuss this heterogeneity in more
detail below.

It is sometimes argued that some regions use EU transfers increasingly inefficiently as they receive more transfers. Due
to a lack of administrative capacity, part of the funds is not spent as intended but used for consumption purposes or
subject to corruption.8 If there are diminishing returns to EU regional transfers, knowing that they foster growth on

average, as in Becker et al. (2010), is not enough.9 In fact, it is important to understand how a varying treatment intensity

(different amounts of EU transfers relative to GDP) affects regional growth. This will allow us to see up to which level
transfers serve the intended goal of fostering regional growth and beyond which a further allocation of funds becomes
inefficient. Estimation of that threshold for the EU’s regional policy programmes calls for an identification strategy that
goes beyond a binary transfer indicator and exploits variation in transfer intensity.

An argument for a declining treatment effect – and, eventually, existence of a maximum desirable level of regional

transfers – arises naturally from neoclassical production theory and the assumption of diminishing returns to investment
and investment-stimulating transfers (see Hirshleifer, 1958). Suppose that investment projects are financed and under-
taken in the order of expected returns on investment. Then, a bigger number of investment projects carried out would be
associated with a lower return to investments (or transfers). If diminishing returns to transfers were relevant, we could
identify a maximum desirable level of the treatment intensity. Above that level, no additional (or even lower) per-capita
income growth effects would be generated than at or below that threshold.

There is a similar argument for a minimum necessary level of regional transfers which is based on the big-push or
poverty-trap theory of development, which states that transfers (or aid) have to exceed a certain threshold in order to
become effective. For instance, this would be the case if the marginal product of capital were extremely low at too small
levels of infrastructure or human capital (see Sachs et al., 2004). Alternatively, this could be the case if regions lagging
behind were isolated from other developed regions (see Murphy et al., 1989, for arguments along those lines). When
applying the big-push or poverty-trap theory to the least-developed NUTS3 regions in the EU, one would expect to find a
3 Greece joined the EU in 1981, and Spain and Portugal in 1986.
4 Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, the Slovak Republic, and Slovenia joined in 2004, and Bulgaria and

Romania in 2007.
5 Until 2006, the Structural Funds included the European Agricultural Guidance and Guarantee Fund (EAGGF) and the Financial Instrument for

Fisheries Guidance (FIFG) which have been replaced by the European Agricultural Fund for Rural Development (EAFRD) and the European Fisheries Fund

(EFF), respectively. Both funds are no longer directly involved in cohesion policy.
6 Member states qualify for transfers from the Cohesion Fund if their GDP per-capita falls below 90% of the community average. The most significant

amount of Structural Funds is transferred to regions with a per-capita GDP below 75% of the community average (so-called Objective 1 regions).
7 Eurostat defines NUTS3 regions as entities of between 150 and 800 thousand inhabitants. An exception is large cities with population of more than

800 thousand which are still usually NUTS3 regions in their entirety. The counterpart to a NUTS3 region in the United States would be a county. In France,

they represent Départements, in Germany, they are equivalent to Landkreise, in Spain, they correspond to Comunidades Autónomas, and in the United

Kingdom, they are associated with the Unitary Authorities.
8 See euobserver.com from October 20, 2009, ‘‘EU funds still vulnerable to fraud in Bulgaria’’, Handelsblatt from March 2, 2010 ‘‘Korrumpierter

Staatsapparat: EU duldet Griechenlands Betrug seit Jahren’’, the New York Times from August 23, 2008, ‘‘EU cuts back funding to Bulgaria’’, or

euractive.com from December 8, 2008, ‘‘Time to redesign the Structural Funds system’’.
9 Becker et al. (2010) provide an overview of the literature on the effects of the EU’s regional transfers and conduct an evaluation of Objective 1

transfers, which make up two thirds of the EU’s Structural Funds Programmes. More specifically, Becker et al. (2010) use a binary treatment indicator in a

regression discontinuity design to study the causal effects of Objective 1 funds on GDP per-capita growth in recipient versus non-recipient regions. The

discontinuity arises from the rule that EU regions whose GDP per-capita falls below 75% of the EU average are eligible for Objective 1 funds whereas

regions above the 75% threshold are ineligible. Their results suggest that, in a best-case scenario, Objective 1 transfers generate a multiplier of

approximately 1.2 so that every Euro of transfers generates 20 extra cents of GDP. However, that multiplier effect relates to Objective 1 treatment only,

since other parts of the Structural and Cohesion Funds do not follow a clearly defined rule (75% threshold) and do not lend themselves to a regression

discontinuity design for identification.
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minimum desirable level of regional transfer intensity only above but not below which transfers generate positive growth
effects. Then, it would be reasonable to allocate more transfers to a few very poor regions in order to ensure that they
induce noticeable effects.

With regions above a maximum desirable treatment intensity or below a minimum necessary treatment intensity, the
overall EU budget could be reduced without any negative growth effects and, hence, there would be scope for
unambiguous efficiency gains. In this analysis we also ask what the empirically optimal transfer intensity is. This will be
the transfer level above which an additional Euro transferred yields less than a Euro of additional GDP. Hence, what we
dub optimal transfer intensity here is associated with a transfer multiplier of unity. Accordingly, a reallocation of transfers
from regions above the optimal transfer intensity to ones below it would enhance aggregate growth (although it might
hurt growth in the regions from which transfers are taken away).

We aim at identifying the functional form of the relationship between EU-NUTS3 regional transfer intensity and per-capita
income growth by way of dose–response function estimation.10 Unlike the study of Becker et al. (2010) and other studies using
a binary indicator for EU regional transfer treatment, the dose–response function allows us to ask to which extent the European
Commission in conjunction with regional authorities at the national and sub-national levels provide and use transfers in an
efficient – here to be interpreted as per-capita-income growth maximizing – way.11 We identify the GDP per-capita growth-
maximizing transfer intensity, which allows us to determine how many and which regions receive too much funding and how
many and which regions receive too little funding out of the Structural and Cohesion Funds Programme.

The results for the two programming periods 1994–1699 and 2000–2006 point to a non-linear relationship between
the treatment intensity of EU regional transfers and per-capita GDP growth. More specifically, we find evidence of a
maximum desirable treatment intensity. At a transfer intensity beyond this level, the null hypothesis of zero (or even
negative) growth effects induced by additional transfers can no longer be rejected. Contrary to the big push hypothesis,
within the EU there is no evidence for the existence of a minimum necessary level of regional transfers to induce positive per-
capita income growth effects.

The estimates suggest that, up to a maximum desirable treatment intensity of about 1.3% of a region’s GDP, EU transfer
receipts from Structural Funds or the Cohesion Fund lead to positive marginal income growth effects. However, beyond a
treatment intensity of 1.3%, per-capita income growth can on average not be increased any further through additional EU
transfers. About 18% of NUTS3 recipient regions received transfers above that threshold. According to our results, a
reallocation of the transfers away from those regions would not harm them, but might benefit other regions. When
applying the stricter criterion of an optimal treatment intensity, we find that transfers should not exceed a treatment
intensity of about 0.4%. According to our estimates, the transfer-multiplier fell short of unity for about 36% of the NUTS3
recipient regions across the two periods considered. This leads to the conclusion that there is significant scope for greater
efficiency at the level of Structural and Cohesion Funds transfers regarding their growth-maximizing allocation for the
Union as a whole as well as its poorest regions.

The remainder of the paper is structured as follows. The next section presents details on the sources and the
construction of data at the level of NUTS3 regions for the two programming periods 1994–1999 and 2000–2006. Also, that
section summarizes descriptive statistics. Section 3 discusses the econometric methodology applied for the identification
of causal effects of the EU’s regional transfers on growth. Section 4 presents the results and interprets the findings against
the background of efficiency. The last section concludes with a summary of the most important findings.

2. Data and descriptive statistics

Our data stem from several sources. Information on EU transfers to NUTS3 regions has been kindly provided by ESPON
(European Spatial Planning Observation Network) for the years 1994–1999 and the European Commission’s Directorate
General for Regional Policy for the year 2000–2006. The latter information originates from a study on the expenditure of
EU regional policy carried out by SWECO. We link those data to various regional characteristics from Cambridge
Econometrics’ Regional Database and a measure of countries’ voting power in the EU Council (measured by the Shapley
and Shubik, 1954 index) which is taken from Felsenthal and Machover (1998) for the first programming period and from
Widgren (2009) for the second programming period.

In total, our data-set consists of 2280 region-programming-period observations out of which 2078 received transfers
through one of the two programmes considered here (Structural Funds or Cohesion Fund). Of the 2078 treated units, 702
classify as Objective 1 regions which received the lion’s share of total EU transfers considered (74% on average across the
two programming periods). A total of 363 of the 2078 treated units received transfers from the Cohesion Fund. Table 1
provides details on the number and characteristics of NUTS3 regions during the two programming periods 1994–1999 and
2000–2006. We pool the two programming periods for the sake of greater precision of the estimated relationship between
10 Earlier studies by Becker et al. (2008) and Hagen and Mohl (2008) used variation in the extent of transfers but did not have access to data at the

disaggregated NUTS3 level as we do now, so that robust identification of the functional relationship between EU regional transfer intensity and per-capita

income growth effects was not possible there.
11 Note that we take the revenue side of the EU budget as given because each country contributes a fixed percentage of GDP and VAT to the EU

budget so taxation is non-progressive. Moreover, data on sub-national contributions to the EU budget are not available. Taking the revenue side as given

implies that we disregard the (hardly quantifiable) efficiency costs of raising the necessary tax revenue for transfers.



Table 1
EU regional transfers and GDP per-capita growth in NUTS3 regions.

Mean Std. dev. Min Max Treated obs.

Annual transfers per treated region
Sample: all regions receiving EU transfers from either Structural Funds or Cohesion Funds budget

Total EU transfers (mn. Euros) 23.141 49.744 0.005 778.531 2078

Total EU transfers/GDP (%) 0.759 1.512 0.00009 29.057 2078

Sample: regions receiving EU transfers from the Structural Funds budget under the Objective 1 heading

Objective 1 transfers (mn. Euros) 52.131 68.869 0.603 778.531 702

Objective 1 transfers/GDP (%) 1.991 2.103 0.076 29.057 702

Sample: regions receiving EU transfers from the Cohesion Funds budget

Cohesion Fund transfers (mn. Euros) 21.479 36.090 0.018 334.935 363

Cohesion Fund transfers/GDP (%) 0.659 0.950 0.002 6.338 363

Annual GDP per-capita growth 0.042 0.017 �0.039 0.138 2078

Notes: Our pooled sample consists of 1091 EU15 NUTS3 regions in the 1994–1999 programming period and 1213 EU25 NUTS3 regions in the 2000–2006

programming period. We miss information on the four French overseas-départements and the two autonomous Portuguese regions Madeira and Azores

for both periods. In the second period we loose 12 regions that cannot be assigned to the 1994–1999 data due to a territorial reform in Saxony-Anhalt.

Hence, in total we have 2280 treated and untreated observations. In order to obtain annual transfers per GDP we divide the annual transfers by the GDP

prior to the start of the respective programming period. This is 1993 for the EU12 in the first period but 1994 for the countries joining in 1995 (Austria,

Finland, and Sweden), and 1999 for the EU15 in the second period but 2003 for the accession countries of 2004. Moreover, we adjust for the number of

years the respective countries actually received funds. This is 6 years for the EU12 in the first period and 5 years for the countries joining in 1995, and

7 years for the EU15 but 3 years for the new accession countries of 2004 in the second period.
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treatment intensity and per-capita income growth. By design, NUTS3 regions of EU member countries as of 1999 are
observed twice in the data while EU entrants during 2000–2006 are observed only once. Accordingly, we adjust standard
errors of parameters and confidence bounds of treatment effects to account for such repeated observations. Pooling more
than two budgetary periods for NUTS3 regions is infeasible since detailed information on treatment intensity for
programming periods prior to 1994–1999 is not available at the required disaggregated level.

Table 1 displays the average annual transfers per treated NUTS3 region adjusting for the number of years the respective
regions actually received transfers. The reason for this adjustment is that Austria, Finland, and Sweden joined the EU only
in 1995 and did not receive transfers for the whole programming period 1994–1999. The same is true for the accession
countries in 2004 that did not receive transfers for the whole 2000–2006 programming period. As mentioned before, 2078
of the 2280 covered EU-NUTS3 region-programming-period observations received transfers from either the Structural
Funds or Cohesion Fund budgets. Table 1 shows that the transfer intensity in these 2078 units varied dramatically.
Whereas the Greek region of Grevena displayed a transfer intensity of 29.057% in the 1994–1999 programming period, the
Swedish region of Hallands län received EU transfers of only 0.00009% – or 5345 Euros – in the programming period 2000–
2006. This variation in NUTS3 regional transfer intensity has three roots: first, the variation in GDP (and per-capita GDP)
across NUTS3 regions; second, the variation in transfers to countries, NUTS2 regions,12 and NUTS3 regions as provided by
the European Commission13; third, the discretion at the national level or the level of NUTS2 regions about the allocation of
funds to NUTS3 entities which fall into their jurisdiction.

The EU spent about 21,934 mn. Euros on regional transfers per annum (out of the Structural Funds and the Cohesion
Fund programmes) across the two periods under consideration of which 2952 mn. Euros were spent through the Cohesion
Fund and 18,982 mn. Euros were transferred through the Structural Funds programmes. Objective 1 regions received about
16,301 mn Euros from the central EU budget per annum across the two periods.14

When using the respective relevant GDP of the year prior to the start of the programming period in the denominator,
the average annual regional transfer intensity amounted to 0.759% for all regional transfers, to 1.991% for Objective 1
transfers only, and to 0.659% for Cohesion Fund transfers. While most of the NUTS3 regions received some transfers from
the central budget, there is considerable variation in the transfer intensity as indicated above. Fig. 1 displays the
geographical distribution of total EU transfer per GDP for both programming periods under consideration.
12 NUTS2 regions are somewhat larger clusters of NUTS3 regions with 0.8–3 million inhabitants.
13 For some types of transfers, such as those falling under the auspices of Objective 1 in the Structural Funds Programmes, eligibility for transfers is

determined at the level of NUTS2 regions (with a few exceptions which determine transfers to NUTS3 regions; see Becker et al., 2010, for a detailed

description of the rules for Objective 1 treatment). Other types of transfers are determined at the NUTS3 level or the national level.
14 Note that these figures refer to the transfers the EU spent annually and cannot be directly compared to the figures in Table 1 which refer to the

average annual funds recipient regions received. The latter adjusts for the number of years regions actually received funds. For that, we calculate transfers

in 1994–1999 divided by 6 or 5 for the EU12 and for the 3 new EU15 members, respectively, and transfers in 2000–2006 divided by 7 or 3 for the EU15

and for the 10 new EU25 members, respectively, before we pool the data and take the average across all observations. In total, there are 12,477 region-

year observations with positive transfers. Multiplying the average annual transfers in Fig. 1 with 12,477 and dividing by 13 (the number of years covered

by the two programming periods) yields approximately the annual funds the EU spent but does not take into account that regions which received

transfers in less than 13 years may have received higher or lower annual funds than other regions in those years they were eligible for funding.



Fig. 1. Regional distribution of EU transfers. Note: The maps indicate the annual transfer intensity (total EU transfers per GPD) for the 1994–1999 and

2000–2006 programming periods.
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In the subsequent analysis, we focus on those 2078 observations that received regional transfers through either the
Structural Funds or the Cohesion Fund programmes. As can be seen from the final row of Table 1, those regions’ per-capita
income measured at Purchasing Power Parity grew by about 4.2% per annum during the two considered programming
periods.15 However, there is a fair amount of variation in the data. Table 1 suggests that the minimum growth rate across
NUTS3 regions reflects a decline by almost 4% per annum while the maximum growth rate was almost 14% per annum
within the sample period.
15 Per-capita income growth is expressed as an average change in log-transformed per-capita income.



Table 2
Descriptive statistics.

Covariates and statistics Mean Std. dev. Min Max

(1) (2) (3) (4)

GDP per-capita 9.583 0.367 8.068 11.038

(GDP per-capita)2 91.971 7.024 65.098 121.835

(GDP per-capita)3 883.945 101.057 525.232 1344.806

Shapley–Shubik index 0.090 0.041 0 0.134

Budgetary period dummy 0.478 0.500 0 1

Border region dummy 0.249 0.433 0 1

Employment 4.567 0.919 0.331 7.712

Industrial employment 3.286 1.009 �2.765 6.603

Service employment 4.075 0.976 0.320 7.427

Population density 0.448 0.957 0.002 20.381

Observations 2078

Notes: Annual GDP per-capita growth is measured at PPP where we use logarithmic growth rates between 1993 and 1999 for the first

period, and logarithmic growth rates between 1999 and 2006 for the second period. Time-varying covariates as per-capita GDP (PPP),

employment measures, etc. refer to initial values, i.e., 1993 for the first period and 1999 for the second period. Total employment,

industrial employment, service employment, and per-capita GDP are measured in logarithmic terms. We miss information on the four

French overseas-départements and the two autonomous Portuguese regions Madeira and Azores for both periods. In the second period

we loose 12 regions that cannot be assigned to the 1994–1999 data due to a territorial reform in Saxony-Anhalt.
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In our empirical analysis we employ various covariates: the GDP per-capita level (at purchasing power parity, PPP)
prior to the respective programming period, total regional employment, sectoral employment, population density, a
measure of countries’ voting power in the EU, a period dummy and a variable that indicates whether a region is located at
the EU border. Table 2 provides descriptive statistics for the data used, where per-capita GDP, and the employment
information are measured in logarithmic terms.
3. Generalized propensity scores

3.1. Methodology

To estimate the causal effect of transfer intensity on per-capita income growth, we resort to generalized propensity
score (GPS) estimation, a non-parametric method to estimate treatment effects conditional on observable determinants of
treatment intensity. Propensity score matching represents a well-suited econometric technique for policy evaluation as it is
able to correct for selection bias into different levels of treatment intensity by comparing units that are similar in terms of
their observable characteristics. Following the seminal paper by Rosenbaum and Rubin (1983) propensity score matching
became very popular in the case of binary treatment (see, e.g., Heckman et al., 1997; Dehejia and Wahba, 1999). The binary
case was extended to categorial multivalued treatment by Imbens (2000) and, more recently, to continuous treatments
(see Hirano and Imbens, 2004; Imai and Van Dijk, 2004).16 In the following, we outline the method developed by Hirano
and Imbens (2004) and apply it to our research question.

Index the regions by i¼ 1, . . . ,N and consider the unit-level dose–response function of outcomes YiðtÞ (annual per-capita
income growth) as a function of treatments t 2 T (transfer intensity). We focus on t040, i.e., regions with positive
transfers. In the binary case, the treatment would be restricted to T ¼ f0;1g. However, our objective is not to analyze
whether or not receiving transfers at all boosts growth, but to what extent a higher treatment intensity yields stronger or
weaker effects than a lower treatment intensity. Furthermore, we want to derive the optimal treatment intensity.
Employing the generalized propensity score methodology, we aim at estimating the average dose–response function
across all regions i, mðtÞ ¼ E½YiðtÞ�.

The key challenge is to compare regions with sufficiently similar characteristics but different treatment intensity in
order to construct a quasi-experimental setting. For each observation i we observe the vector of covariates Xi, the
treatment intensity Ti, and the outcome corresponding to the level of treatment received, Yi ¼ YiðTiÞ. Let us drop index i for
simplicity and assume that YðtÞt2T ,T ,X is defined on a common probability space, t is continuously distributed with
respect to a Lebesgue measure on T , and Y¼Y(T) is a well defined random variable.

For such a setting, the concept of unconfoundedness for binary treatments was generalized by Hirano and Imbens (2004)
to one of weak unconfoundedness for continuous treatments

YðtÞ ? T9X for all t 2 T : ð1Þ

Regions differ in their characteristics X such that some are more or less likely to receive a high treatment intensity than
others. Weak unconfoundedness means that, after controlling for observable characteristics X, any remaining difference
16 See Becker and Muendler (2008) and Kluve et al. (forthcoming) for recent applications of GPS estimation in different contexts.
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in treatment intensity T across regions is independent of the potential outcomes YðtÞ. Eq. (1) is referred to as weak
unconfoundedness because it does not require joint independence of all potential outcomes, YðtÞt2½t0 ,t1 �

,T ,X. Instead, it
requires conditional independence to hold at given treatment levels.

The generalized propensity score is defined as

R¼ rðT,XÞ, ð2Þ

where rðt,xÞ ¼ f T9Xðt9xÞ is the conditional density of the treatment given the covariates. Similar to the conventional
propensity score with binary treatments, the generalized propensity score is assumed to have a balancing property which
requires that, within strata of rðt,XÞ, the probability that T ¼ t does not depend on the value of X. In other words, when
looking at two observations with the same ex ante probability (conditional on observable characteristics X) of being
exposed to a particular treatment intensity, their actual treatment intensity is independent of X. That is, the generalized
propensity score summarizes all information in the multi-dimensional vector X so that

X ? 1fT ¼ tg9rðt,XÞ: ð3Þ

This is a mechanical property of the generalized propensity score, and does not require unconfoundedness. In combination with
weak unconfoundedness, the balancing property implies that assignment to treatment is weakly unconfounded given the

generalized propensity score: if assignment to treatment is weakly unconfounded given pre-treatment characteristics X, then

f T ðt9rðt,XÞ,yðTÞÞ ¼ f T ðt9rðt,XÞÞ ð4Þ

for every t (see Hirano and Imbens, 2004, for a proof). Hence, we can evaluate the generalized propensity score at a given
treatment level by considering the conditional density of the respective treatment level t. In that sense, we use as many
propensity scores as there are treatment levels, but never more than a single score at one treatment level.

We eliminate biases associated with differences in the covariates in two steps (for a proof that the procedure removes
bias, see Hirano and Imbens, 2004):
1.
per

the

to t

em
Estimate the conditional expectation of per-capita income growth as a function of two scalar variables, the treatment
level T and the generalized propensity score R, bðt,rÞ ¼ E½y9T ¼ t,R¼ r�.
2.
 Estimate the dose–response function at a particular level of the treatment intensity by averaging this conditional
expectation over the generalized propensity score at that particular level of treatment intensity, mðtÞ ¼ E½bðt,rðt,XÞÞ�.

For the latter, one does not average over the generalized propensity score R¼r(T,X), but over the score evaluated at the
treatment level of interest, rðt,XÞ. In other words, one fixes t and averages over Xi and rðt,XiÞ8i.

3.2. Estimating the generalized propensity score and the balancing of covariates

In the following, we apply the methodology outlined above to our data-set of 2078 NUTS3-programming-period
observations receiving different levels of transfers from the European central budget. The treatment intensity of interest,
Ti, is the average annual amount of EU transfers relative to the NUTS3 level GDP prior to the beginning of the respective
programming period (see Table 1 for a summary of treatment intensities). Following Hirano and Imbens (2004), we
assume a normal distribution for the treatment intensity given the covariates:

Ti9Xi �Nðb0þXib1,s2Þ, ð5Þ

where Xi is a row vector and b1 a column vector. Since the empirical distribution of EU regional transfers per GDP is
positively skewed, we chose a logarithmic transformation. According to the Kolmogorov–Smirnov test (and other
conventional test statistics), the log-transformed treatment intensity variable does not violate the assumption of
normality. As determinants of treatment intensity, we employ the following observables in Xi. First of all, we use log
GDP per-capita (at purchasing power parity) measured prior to the respective programming period. This variable should
be included, since it matters for the treatment assignment rule for some types of EU transfers.17 To allow for a non-linear
relationship between treatment intensity and log per-capita income, we include a quadratic and a cubic of log GDP per-
capita along with the main effect. Moreover, we include the Shapley and Shubik (1954) index of a country’s voting power
prior to a budgetary period to account for effects of power-play and lobbying at the country level. Finally, we include
several variables characterizing the economic structure of a region such as log employment, log industrial employment,
log service employment, an EU border dummy, and population density (measured as inhabitants per square kilometer)
prior to a budgetary period.18 The economic structure of a region is considered to be a key determinant of regional
17 For instance, NUTS2 regions qualify for Objective 1 transfers if their per-capita GDP falls short of 75% of the EU average. Moreover, the level of GDP

-capita prior to a programming period is a key determinant of subsequent per-capita income growth which we should condition on in order to isolate

impact of transfer intensity on growth.
18 In a sensitivity analysis, we used employment shares instead of log employment levels. All results are qualitatively and quantitatively insensitive

his choice. However, we use the log-level specification in the paper as it fits the data on treatment intensity better in terms of R2 than a model using

ployment shares.



Table 3
Estimation of the generalized propensity score (GPS).

Covariates and statistics Coef. Std. err.

GDP per-capita 403.226 55.040nnn

(GDP per-capita)2
�42.016 5.787nnn

(GDP per-capita)3 1.443 0.203nnn

Shapley–Shubik index �4.903 0.809nnn

Budgetary period dummy 0.672 0.063nnn

Border region dummy �0 .054 0.067

Employment 1.964 0.278nnn

Industrial employment �0.957 0.107nnn

Service employment �0.867 0.197nnn

Population density 0.055 0.029n

Constant �1284.350 174.267nnn

Observations 2078

R2 0.561

Notes: nnn, nn, n denote significance at the 1%, 5%, and 10% level,

respectively.
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transfers. Table 2 summarizes moments (such as mean, standard deviation, minimum, and maximum) of the distribution
of these variables. In Appendix A we perform a sensitivity analysis which takes into account regional infrastructure
endowments as well as data on regional environmental issues as determinants of EU regional transfer intensity. The
estimated relationships turn out qualitatively and quantitatively similar to the benchmark results which exploit a larger
sample.19

We estimate Eq. (5) by ordinary least squares as reported in Table 3. Using the observable variables in Table 2 plus a
constant, we can explain regional transfer intensity fairly well. According to Table 3, the included covariates explain about
56% of the variation in treatment intensity. All of the covariates except one, namely an indicator variable identifying
regions at the EU border, exert a significant impact on treatment intensity at least at 10% (using two-tailed test statistics
and robust standard errors).

Building on this estimation, the GPS is calculated as

R̂i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pŝ2
p exp �

1

2ŝ2
ðTi�b̂0�Xib̂1Þ

2

� �
: ð6Þ

As stated above, the GPS allows us to remove any bias in the estimate of the dose–response function, E½YiðtÞ�, if the
covariates are sufficiently balanced. That is, Eq. (3) has to be satisfied. Furthermore, focusing on the common-support
region between treated and control units in the sample is helpful. This avoids perfect predictability of the treatment
intensity given a specific value of the GPS. Within the common-support region, units with a certain treatment intensity
and respective propensity scores have counterparts with similar GPS but different treatment intensity. In the following, we
illustrate that focusing on the common-support region and controlling for the GPS improves comparability of observations
with different treatment intensity tremendously in the data at hand.

To assess the performance of the GPS, Hirano and Imbens (2004) suggest to organize the data in groups of treatment
intensity. We chose to discretize the treatment intensity according to the quartiles of the distribution which leaves us with
four treatment groups. The first and the third group consist of 520 observations, respectively, while the second and fourth
group consist of 519 observations, respectively. As is illustrated in Table 4, these groups differ starkly in the observed
covariates. The four columns report t-statistics on whether the mean of each covariate in the respective group is
significantly different from the mean of the covariates in the three other groups. According to Table 4, only 8 of the 40 t-
values are lower than 1.96. Overall, 80% of the observables display a significant difference between treated units in a given
group and control units with a treatment intensity belonging to another group when using two-tailed test statistics and a
5% significance level. The median t-value across all tests is 3.46 and the average mean t-value is 7.76. Accordingly, ex ante,
the risk of biased causal inference with continuous treatments is particularly large due to such stark differences in
observables determining treatment intensity.

Choosing a coarser or finer classification by assigning the observations to fewer or more treatment groups does not
affect our results in a decisive way. In Appendix B we report the results for sensitivity checks with three and five treatment
groups instead of four groups as used in the main text.

For each treatment group j 2 f1;2,3;4g we calculate the median treatment intensity TMj and evaluate the GPS for the
whole sample at median treatment intensities. Hence, we calculate R̂i ðT

j
M ,XiÞ for each group j and each observation
19 Data on regional infrastructure endowments and, especially, data on environmental characteristics are missing for a number of regions. Hence, the

corresponding augmented treatment intensity models in the Appendix exploit variation from a smaller data sample. This limits the scope of conclusions

for economic policy in an unnecessary way, since the functional form of the dose–response function is quite similar to the one based on the more

parsimonious benchmark specification of regional transfer treatment intensity.



Table 4
Treatment groups and covariates.

Covariates and statistics Group 1 Group 2 Group 3 Group 4

GDP per-capita �22.942 �9.585 2.803 33.683
(GDP per-capita)2

�23.220 �9.339 3.107 33.041
(GDP per-capita)3

�23.462 �9.074 3.402 32.348
Shapley–Shubik index �6.211 �3.286 2.932 6.575
Budgetary period dummy 2.384 0.103 �1.674 �0.810

Border region dummy 3.123 1.333 �1.097 �3.361
Employment �5.649 �2.473 3.316 4.796
Industrial employment �7.915 �3.464 3.463 7.919
Service employment �6.053 �3.353 1.757 7.699
Population density �6.906 �0.548 0.606 6.850
Observations 520 519 520 519

Median t-value 3.46
Mean t-value 7.79

Notes: The groups are generated according to the quartiles of total EU transfers per GDP. t-Values reported in

boldface indicate significance at the 5% level. The median and mean t-values are calculated on the basis of the

t-statistics across all groups and covariates as reported in the table.
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i¼1,y,N using the estimates b̂0 ,b̂1 ,ŝ2 reported in Table 3. We test the common-support condition by plotting the GPS
values R̂k ðT

j
M ,XkÞ where k 2 j for observations k being part of group j, against the GPS values R̂l ðT

j
M ,XlÞ where l=2j of

observations l not belonging to group j. Both the GPS of observations k and the GPS of observations l are evaluated at the
median treatment intensity of group j (TM

j
). Only observations l=2j and observations k 2 j featuring GPS values with common

support are used for estimation of the dose–response function. Hence, we only use observations l for which

MinfR̂k ðT
j
M ,XkÞgr R̂l ðT

j
M ,XlÞrMaxfR̂k ðT

j
M ,XkÞg 8j 2 f1;2,3;4g

holds true, where k 2 j and l=2j. Put differently, we require compared observations to display a sufficient degree of similarity
in the observable characteristics determining treatment intensity.

The histogram of GPS values evaluated at median treatment intensities of each group are illustrated in Fig. 2, where the
yellow bars represent observations of group j and the black bars represent all other observations not belonging to j. We
display separate histograms for each group j 2 f1;2,3;4g. As can be seen in Fig. 2, in groups 2 and 3 there are black bars
outside the range of the yellow bars, i.e. there are control observations outside the common support. Similarly, in groups 1
and 4, there are control observations outside the common support. This cannot be seen in the figure because the lack of
common support occurs in the left half of the lowest bar. In the following analysis, we restrict our sample to observations
that satisfy the common-support condition.

Geographically, these observations often turn out to be NUTS3 regions in the new member countries of the EU. Fig. 3
indicates which NUTS3 regions are inside (in white) or outside of the common-support region in a given programming
period (in red). Fig. 3 suggests that the regions outside the common support are typically peripheral ones in any of the two
budgetary periods. When using the GPS to construct comparable units of observation, we find that there are 1693 of the
2078 region-programming-period units with common support.

After imposing the common-support condition, we check whether the generalized propensity scores achieve a
sufficient balancing of covariates and thereby eliminate the selection bias potentially affecting the dose–response function
estimates. As explained above, four groups are determined on the basis of the variation in the continuous regional transfer
intensity. In addition, we determine 10 blocks within each group based on the estimated GPS. We define the blocks for each
group j 2 f1;2,3;4g by the deciles of the GPS evaluated at the median of the group R̂k ðT

j
MÞwhere k 2 j. Then, we assign each

observation i 2 N to the respective block according to its GPS evaluated at TM
j

. Note that the blocks are determined for each
group separately, and only ‘‘treated’’ observations that are part of the respective group are relevant for the calculation of
the deciles. By design, the sum of observations over blocks in a group yields the total number of observations in that group.

Table 5 illustrates the group-and-block structure generated from this algorithm. For instance, the first of the 10 blocks
has in total 678 observations of which 40 are located in group 1 and 638 in all other groups together. Taking the sum over
all blocks and adding the respective group and control observations yields the total number of 1693 observations in the
common-support region. An organization of the data in this way helps identifying comparable observations with the same
predicted treatment intensity (blocks) but different actual treatment intensity (groups). Following Hirano and Imbens
(2004) to test the balancing property, we compare observed characteristics of units within a specific block of predicted
transfer intensity across groups of actual treatment intensity. For instance, we compare the 40 observations in cell group

1/block 1 to the 678 observations in cell control 1/block 1 and test for equality of covariates. Accordingly, we conduct
10 two-tailed t-tests for each group across all covariates. Table 6 reports the mean t-statistics for each group across all
covariates, where we weight the t-statistics by the number of observations in the respective block in order to calculate the
mean t-statistic.



Fig. 2. Common support of the generalized propensity score. Note: The groups are generated according to the quartiles of total EU transfers per GDP.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The degree of bias reduction through matching on the GPS is considerable. This can be seen from a comparison of the
t-values in Table 6 which contrasts units within the support region after matching based on the GPS with the respective ones in
Table 4 before matching. While the median and average absolute t-values were 3.46 and 7.79, respectively, in Table 4, the
corresponding values in Table 6 are 0.53 and 0.63, respectively. Before matching, almost all t-values were statistically
significant while only 2 out of 40 t-values remain marginally significant after controlling for the GPS.20 Accordingly, we argue
that the estimated generalized propensity scores perform well in reducing potential treatment-intensity selection bias.
3.3. Estimating the dose–response function

After having largely removed selection bias into different treatment intensities, we can proceed to estimating and
visualizing the relationship between regional transfer intensity and regional GDP growth. To do so, the following ‘‘second-
stage’’ regression model specifies the conditional expectation of Yi given Ti and Ri:

E½Yi9Ti,Ri� ¼ a0þa1Tiþa2T2
i þa3T3

i þa4R̂iþa5R̂
2

i þa6R̂
3

i þa7R̂iTi ð7Þ

using the GPS values estimated in the first stage ðR̂iÞ and the observed treatment intensities (Ti). The parameters are
estimated by ordinary least squares, where we implement a block-bootstrap procedure (with 1000 replications) which
takes into account that the GPS is not observed but estimated and that some NUTS3 regions are repeatedly observed across
programming periods. The GPS terms in the regression are the ones ‘‘controlling’’ for selection into treatment intensities. If
selectivity indeed matters, we expect those terms to be jointly statistically significant. In Table 7, we show coefficient
estimates from Eq. (7) and find that all GPS-based polynomial terms matter both individually as well as jointly. Hence, GPS
20 It might be possible to improve the balancing property even further by either using more than 10 blocks or eliminating extreme per-capita income

growth rates from the distribution. However, using too many blocks may lead to a small-sample bias of the estimates. We have experimented with

dropping units with extreme values of per-capita income growth, but this does not have a visible impact on the estimated non-parametric dose–response

function. Hence, to avoid a small-sample bias and an ad-hoc judgment about sample trimming, we decided to use 10 blocks and not drop further

observations from the data when assessing the balancing property.



1994-1999

Excluded observations

2000-2006

Excluded observations

Fig. 3. Observations failing common support restriction. Note: The maps indicate the region-period observations that are dropped due to their GPS values lying

out of the common support region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Cell size for comparison of treated and control units in the matrix of 10 blocks and 4 groups.

Block Group 1 Control 1 Group 2 Control 2 Group 3 Control 3 Group 4 Control 4

1 40 638 49 398 49 336 31 848

2 42 183 47 155 49 183 31 256

3 41 114 48 113 49 121 32 102

4 40 91 50 105 49 147 32 56

5 41 73 48 99 49 73 30 30

6 40 57 47 98 49 63 32 29

7 41 53 50 49 49 89 32 20

8 41 30 48 74 49 52 31 15

9 41 27 48 67 49 67 31 11

10 40 20 48 52 49 72 31 13

Notes: The groups are generated according to the quartiles of EU transfers per GDP whereas the blocks are generated according to the deciles of the GPS

evaluated at the median treatment intensity of each group.
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Table 6
Balance of covariates accounting for the GPS.

Covariates and statistics Group 1 Group 2 Group 3 Group 4

GDP per-capita �0.474 �1.989 �1.039 1.006

(GDP per-capita)2
�0.462 �1.961 �1.001 0.981

(GDP per-capita)3
�0.451 �1.932 �0.962 0.956

Shapley–Shubik index �0.017 �0.182 0.728 �0.522

Budgetary period dummy 0.547 �0.530 �0.828 0.120

Border region dummy 0.606 �0.104 �0.283 1.253

Employment 0.448 �0.096 0.383 0.486

Industrial employment 0.219 �0.099 0.774 0.687

Service employment 0.405 �0.171 0.059 0.680

Population density 0.124 �0.317 �0 .835 0.558

Observations 407 483 490 313

Median t-value 0.53

Mean t-value 0.63

Notes: The groups are generated according to the quartiles of total EU transfers per GDP. Observations which do not

satisfy the common support condition are excluded from the respective groups. In order to control for the GPS values we

discretize them into deciles. t-Values reported in boldface indicate significance at the 5% level. The median and mean t-

values are calculated on the basis of the t-statistics across all groups and covariates as reported in the table. See main text

for details.
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estimation is indeed relevant and significantly reduces the bias of the estimated response of per-capita income growth to
changes in regional transfer intensity.

With the parameters estimated in the second stage, we can now estimate the average potential outcome at treatment
level t, the so-called dose–response function:

dE½Yt� ¼
1

N

XN

i ¼ 1

½â0þ â1tþ â2t2þ â3t3þ â4R̂ðt,XiÞþ â5R̂
2
ðt,XiÞþ â6R̂

3
ðt,XiÞþ â7R̂ðt,XiÞt�: ð8Þ

In addition to the dose–response function itself we display its derivative with respect to the regional transfer
intensity—which is commonly referred to as the treatment effect function. The latter allows us to infer the aforementioned
minimum necessary, the optimal, and the maximum desirable treatment intensities of EU regional transfers.

4. Results

4.1. Estimates for total EU regional transfers

The dose–response function based on the GPS is a non-parametric estimate of the functional relationship between per-capita
income growth and regional transfer intensity, and so is the treatment effect function. Fig. 4 displays each of those two non-
parametric functions in the center as well as the corresponding block-bootstrapped 90% confidence interval. Fig. 4 is obtained for
all EU regional transfers at the NUTS3 level under the auspices of the Structural Funds and the Cohesion Fund as in Tables 3–7.

According to the dose–response function in the left panel of Fig. 4, the response of regional per-capita income growth
increases monotonically with regional transfer intensity. However, a marginal increase of transfer intensity at a given transfer
level does not necessarily lead to statistically significantly higher per-capita income growth. This can be seen from the derivative
of the dose–response function with respect to transfer intensity in the right panel of Fig. 4. Since the dose–response function is
concave, the treatment effect function declines monotonically. The 90% confidence band of the treatment effect function
includes zero per-capita income growth at a treatment intensity of about or more than 1.3%. The latter level is indicated by a
dotted black bar in the treatment effect plot of Fig. 4. Below this regional transfer intensity level, an increase in regional transfer
intensity leads to an unambiguous increase in the per-capita income growth response. NUTS3 regions with a regional transfer
intensity of more than 1.3% do no longer unambiguously gain from additional EU transfers. In other words, for regions above the
1.3% threshold, a reduction of EU transfers to 1.3% of their GDP would not necessarily harm their growth prospects.

The estimated dose–response function also confirms the results of our previous study where we concluded that
transfers under the Objective 1 scheme raised annual growth in the recipient regions on average by about 1.6 percentage
points (see Becker et al., 2010). In our data-set, Objective 1 regions received on average EU transfers in the amount of 1.9%
of their GDP per annum. At such a transfer intensity, the dose–response function in Fig. 4 predicts an annual growth
response of about 5.1% for the average Objective 1 region. The non-Objective 1 regions in our data-set had an average
annual growth rate of about 3.6% which yields an average treatment effect of Objective 1 treatment of about 1.5
percentage points. Accordingly, the magnitudes of the average treatment effects as derived from the regression
discontinuity design and from the generalized propensity score approach are quite similar. Yet, as argued above, the
dose–response function provides insights beyond those of our earlier study which aimed at estimating a homogeneous
local average treatment effect.



Table 7
Estimation of the dose–response function.

Covariates and statistics Coef. Std. err.

ln(Total EU transfers/GDP) 0.012 0.0007nnn

ln(Total EU transfers/GDP)2 0.001 0.0001nnn

ln(Total EU transfers/GDP)3 0.00004 4.61e�06nnn

ln(GPS) 0.001 0.0002nnn

ln(GPS)2 0.0005 0.00006nnn

ln(GPS)3 0.00003 3.89e�06nnn

ln(GPS)nln(Fund/GDP) 9.00e�06 0.00003

Constant 0.084 0.002nnn

Observations 1693

R2 0.11

Notes: nnn, nn, n denote significance at the 1%, 5%, and 10% level, respectively. We estimate the

dose–response function by blockwise bootstrapping (i.e., drawing from the regional level and then

merging respective periods) with 1000 iterations that take into account first-stage estimations.
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The results in Fig. 4 also point to the existence of a maximum desirable level of regional transfers in terms of target
region GDP beyond which the per-capita income growth stimulus becomes unimportant so that additional transfers, on
average, are wasted. Of all the 2078 observations receiving transfers in the two considered programming periods (this
number includes units within and outside of the common-support region applied in Fig. 4), 1698 display a transfer
intensity below the maximum desirable level of 1.3%, and 380 units are treated in excess of 1.3%. The sum of regional
transfers to those 380 observations amounted to 148,450.38 mn. Euros. Suppose the European Commission had limited the
transfers to those 380 observations to exactly 1.3% of their initial GDP. This would have entailed a reduction of transfers by
32,237.091 mn. Euros in the first programming period and by 31,716.078 mn. Euros in the second programming period.
Suppose that the European Commission had used those saved funds in a financially neutral way and spent it in other
regions so as to promote aggregate growth in the Union. Ignoring region size, the Commission would then have allocated
the saved funds to the regions with a low regional transfer intensity. Suppose the Commission had allocated the funds to
the 25% regions with the lowest transfer intensity in each programming period. In 1994–1999 these were 272 regions
featuring an average treatment intensity of about 0.014% and in 2000–2006 these were 248 regions featuring an average
treatment intensity of about 0.026%. Moreover, assume that the reallocation had been administered so as to provide each
of these regions with the same annual transfer intensity after redistribution.21 Then, the average treatment intensity could
have been increased by 0.246 and 0.164 percentage points in the first and in the second programming period, respectively,
without any additional funds required.22 According to our point estimates in Tables 3 and 7 this would have raised annual
growth in the average region benefiting from this kind of redistribution by about 1.12 percentage points in the first
programming period and by about 0.76 percentage points in the second programming period. Since the reduction of
transfers to recipient regions above a transfer intensity of 1.3% should not affect their growth rates in a significant way,
this kind of redistribution would have entailed unambiguous efficiency gains.

Another important concept is what we dubbed the optimal transfer intensity which was defined as the threshold where
an additional Euro transferred yields exactly one Euro of additional GDP in the average recipient region. Accordingly, the
optimal transfer intensity has to satisfy the condition

@ dE½Yt�

@t
@t
@I
¼ lnðGDPþ1Þ�lnðGDPÞ3

@ dE½Yt�

@t � 0:01, ð9Þ

where I is the absolute level of transfers, t¼ ðI=GDPÞ � 100, and @ dE½Yt�=@t is the treatment effect function as displayed in
the right panel of Fig. 4.23 If the treatment effect function exceeds 0.01, an additional Euro of transfers boosts GDP in the
recipient region by more than one Euro such that a higher level of regional redistribution would benefit the Union’s total
GDP. On the contrary, if the treatment effect function falls short of 0.01, an additional Euro transferred yields less than a
Euro in a recipient region such that the volume of transfers is inefficiently high.

The optimal transfer intensity is indicated by a dotted black bar in right panel of Fig. 4. Across the two periods under
consideration the optimal transfer intensity in Fig. 4 amounts to about 0.4% of regional GDP. Note that a transfer intensity
21 This kind of reallocation generates the biggest possible effect for those regions given that leapfrogging is to be avoided.
22 In the first programming period, the targeted 272 regions would have received transfers for 6 years. These regions featured an average GDP of

8,230.146 mn. Euros and received average annual transfers of 1.505 mn. Euros. By the mentioned redistribution scheme, the treatment intensity in those

regions could have been raised to about ð272� 6� 1:505 mn:hþ32,237:091 mn:hÞ=ð272� 6� 8,230:146 mn:hÞ � 100¼ 0:26% in the first programming

period. The 248 targeted regions in the second programming period would have received transfers for 7 years. These regions featured an average GDP of

10,995.18 mn. Euros and received average annual transfers of 2.308 mn. Euros. In those regions, the transfer intensity could have been raised by the

mentioned reallocation scheme to about ð248� 7� 2:308 mn:hþ31,716:078 mn:hÞ=ð248� 7� 10,995:18 mn:hÞ � 100¼ 0:19% in the second program-

ming period.
23 Other things equal, an additional Euro boosts the growth rate by 1=GDP and the percentage transfer intensity by 100=GDP such that the optimal

transfer intensity is reached where the estimated treatment effect function @ dE½Yt�=@t equals 0.01.



Fig. 4. Effects of total EU transfers. Note: Observations with treatment levels in the highest and lowest 5% are trimmed. The dotted bars in the treatment

effect function indicate the optimal treatment intensity and the maximum desirable treatment intensity, respectively. The functions in the center of each

graph are surrounded by their block-bootstrapped 90% confidence bands.
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above the optimum desirable level may still be below the maximum desirable transfer intensity so that a given recipient
region with a transfer intensity in that range may still significantly benefit from additional EU transfers.

While the maximum desirable transfer intensity requires only a significant impact on recipient regions, the optimal transfer
intensity requires a transfer multiplier above one. Hence, the latter concept is closely linked to aggregate efficiency. Suppose
the European Union’s single objective had been aggregate growth in the two programming periods under consideration. Then,
the Union should have cut transfers to regions with a transfer intensity in excess of 0.4% (344 and 397 regions in the 1994–
1999 and 2000–2006 programming periods, respectively) and have raised transfers to regions below the optimal transfer
intensity (741 and 596 regions in the 1994–1999 and 2000–2006 programming periods, respectively). Yet, such a policy would
have been in conflict with the political goal of regional cohesion, since it would have implied a reallocation of transfers from
less developed regions with a high transfer intensity to rather prosperous regions with a low transfer intensity. Such a trade-off
between regional cohesion and aggregate efficiency would have been pertinent for 162 regions in the 1994–1999 period and
199 in the 2000–2006 period featuring a transfer intensity above the optimal level but below the maximum desirable level.24 In
any case, according to the reported estimates, cutting transfers to regions beyond the maximum desirable transfer intensity
enhances efficiency without harming regional cohesion.

Using NUTS3-level data on the gap between a region’s per-capita income level to the (unweighted) average and the
transfer intensity together with the estimated treatment function in Fig. 4, we can classify regions along two dimensions.
First, regions with a transfer multiplier smaller than unity (i.e., regions to the right of the red dotted line in Fig. 4) and
regions with a transfer multiplier of unity or greater than that (i.e., regions at or to the left in Fig. 4). Second, regions with a
non-positive per-capita income gap (i.e., ones with a real per-capita income of or below the EU average) and ones with a
positive per-capita income gap (i.e., regions with a per-capita income above the unweighted EU average across NUTS3
units). This classification of regions leads to four possible regimes in a given programming period.25 Applying the
estimated treatment effect function to all regions including the ones outside of the common support of the generalized
propensity score, we may determine which group a NUTS3 region belongs to.

Fig. 5 illustrates the outcome for the two programming periods NUTS3-level transfer data are available for. In essence,
the results from this study suggest that – in pursuit of the two goals of an effective use of funds and the closure of the per-
capita income gap within the Union – the European Commission and national governments together might have reduced
transfers to regions which are colored light-red and, even more so, dark-red, and have reallocated those transfers to the
dark-blue regions. The figures suggest that the two aforementioned goals could have been followed in a better way if –
with a few exceptions – transfers had been reallocated from the geographical periphery of the EU towards its core in both
24 Note also that the value of the treatment intensity where the upper bound of the displayed confidence interval is equal to 0.01 (i.e. the value

where the multiplier is unity; see (9)) is below the maximum desirable treatment intensity. The fact that the upper bound of the optimal treatment

intensity lies below the maximum desirable treatment intensity indicates that there is, for some regions, a trade-off between aggregate efficiency and

regional cohesion (see Martin, 1999 and Boldrin and Canova, 2001 for a theoretical elaboration on this trade-off).
25 There is a fifth group of NUTS3 regions, namely the ones which did not get any transfers as considered in this study in a given programming

period.
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Multiplier<1, Gap>0

2000-2006

Multiplier>=1, Gap<=0
Multiplier>=1, Gap>0
Multiplier<1, Gap<=0
Multiplier<1, Gap>0

Fig. 5. Transfer multiplier and per-capita GDP gap. Note: The regions are assigned to the four groups according to the predicted transfer multiplier and

their per-capita GDP gap prior to the respective programming period, i.e. 1993 and 1999. The transfer multiplier is derived using the treatment effect

function from Fig. 4 and the respective treatment intensity. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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the 1994–1999 and the 2000–2006 programming periods. The reason for this outcome is that many of the poorest regions
in the Union display a much weaker response to transfers than ones that are closer to but still below the Union’s average
per-capita income level in the geographical core.
4.2. Estimates for specific treatments

We can produce similar estimates for different sub-components of the EU transfer budget. Since Structural Funds
transfers account for the lion’s share (about 87% on average) of all of the EU’s regional transfers, the results for all transfers
and Structural Funds transfers alone are very similar. However, we can consider somewhat smaller budgets such as



Fig. 6. Effects of (A) Objective 1 and (B) cohesion fund transfers. Note: Observations with treatment levels in the highest and lowest 5% are trimmed. The

dotted bars in the treatment effect functions indicate the minimum necessary and the maximum desirable treatment intensities. The functions in the

center of each graph are surrounded by their block-bootstrapped 90% confidence bands.
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transfers to Objective 1 regions (which account for about 74% of all EU-administered regional transfers) and, alternatively,
for Cohesion Fund transfers (about 13% of total transfers). Again, we can estimate the dose–response function and the
treatment effect function.26

Panels A and B in Fig. 6 summarize the results for transfers to Objective 1 regions and Cohesion fund transfers,
respectively, akin to Fig. 4 for all transfers. Either one of the two figures displays a similar pattern. First of all, neither the
dose–response function nor the treatment effect function is monotonic but hump-shaped. In particular, the confidence
bands of the treatment effect function cross the abscissa twice. Hence, the figures suggest that there is a minimum
necessary level of transfer treatment in the two sub-categories and a maximum desirable level. However, one reason for
the existence of the former is that the number of observations with a very low treatment intensity is relatively small and
the estimated variance in response is relatively large for those units. Hence, the statistical evidence of existence of a
26 Obviously, the validity of GPS estimation again depends on balancing of the covariates as with all regional transfers. For the sake of brevity, we

suppress the documentation of balancing here, but results are available from the authors upon request. It turns out that the balancing property tests are

as successfully met as in the case of all EU regional transfers combined.
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maximum desirable treatment level is stronger than the one of a minimum necessary one. According to Fig. 6, the
maximum desirable treatment threshold is at about 1.8% for Objective 1 regional transfers and at about 0.61% for Cohesion
Fund transfers.

5. Conclusions

This paper focuses on the estimation of the response of average annual GDP per-capita growth to changes in the
intensity of regional transfers provided by the European Commission under the auspices of the Structural Funds and
Cohesion Fund programmes. We use NUTS3 data, the most disaggregated regional data available, covering the two
budgetary periods 1994–1999 and 2000–2006. Non-parametric generalized propensity score analysis allows us to
estimate the causal effect of different levels of EU transfers on regional per-capita income growth.

Our results point to an optimal transfer intensity of 0.4% of target region GDP and a maximum desirable intensity of
1.3%. Additional transfers to regions below a transfer intensity of 0.4% enhance aggregate efficiency as they exhibit a
multiplier above one. Regions with an EU transfer intensity below 1.3% of their beginning-of-period GDP could grow faster
in response to additional EU transfers. Regions with a transfer intensity of more than 1.3% of GDP could give up EU
transfers without experiencing a significant drop in their average annual per-capita income growth rate. For a certain
range of transfer intensities, we detect a trade-off between aggregate efficiency and regional cohesion. Reducing the
transfers to regions below the maximum desirable transfer intensity significantly harms their growth prospects but may
enhance aggregate efficiency, if the transfer intensity is above the optimal level. A reallocation of EU transfers from the 18%
of regions that received more than 1.3% of their initial GDP as EU transfers to regions below that threshold would have
been efficient and could have boosted regional convergence even further in the two considered programming periods.
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Appendix A. Infrastructure endowments and environmental hazards as additional determinants of treatment intensity

There are good reasons to expect the transfer allocation within the EU to depend also on regional infrastructure
endowments and on local environmental issues as the Structural Funds and the Cohesion Fund finance many
infrastructure and environmental projects. We aim at capturing these effects by the regional road density and by an
index that reflects environmental hazards in an augmented empirical analysis. The data on road endowments were
provided by the Office for Regional Science, Planning and Geographical Information (RRG). We include the cumulative
length of roads in the respective NUTS3 regions (in kilometers) prior to each programming period, i.e., 1993 and 1999,
weighted by the total area (in square kilometers) in addition to the observable covariates in Xi. The environmental hazards
index stems from the ESPON regional database where we chose the index capturing all weighted environmental hazard
values. The hazard dimensions include snow avalanches, droughts, earthquakes, extreme temperatures, floods, forest fire,
landslides, the occurrence of storm surges, the tsunami potential, the risk of volcanic eruptions, winter storms and tropical
storms, the air traffics hazard potential, the risk from chemical plants, the risk of radioactive contamination, and oil spills.

The infrastructure variable as well as the environmental hazard index turn out to vary significantly across treatment
groups which suggests that they indeed affect the transfer treatment intensity. Including these variables also raises the
explanatory power of the first-stage regression from an R2 of 56% to one of 58%. After imposing the common support
condition and matching on the GPS we are still able to reach a sufficient balancing of covariates and thereby eliminate the
selection bias. While 39 out of 48 t-tests on mean differences of covariates indicate significant differences across the four
treatment groups before matching on the GPS, none of the t-tests remains significant after controlling for the GPS. The
average t-statistic drops from 5 to 0.4 after controlling for the GPS.27 Again, we follow the procedure as outlined in Section
3.3 for estimating the dose–response function and the treatment effect function for the augmented model. Due to missing
data on the infrastructure and environmental variables the augmented second-stage regression is based on only 1332
observations. Yet, despite the considerably smaller sample with common support, the point estimates as well as the
confidence intervals of the dose–response as well as the treatment effect functions do not change much compared to our
benchmark estimation (see Fig. A1). Provided that the results are qualitatively and quantitatively similar to the benchmark
results in the main text, we consider the main results preferable since they are based on a substantially larger sample of
observations.
27 The corresponding tables are available upon request.



Table B1
Treatment groups and covariates (3 groups).

Covariates and statistics Group 1 Group 2 Group 3

GDP per-capita �26.660 �3.986 33.481
(GDP per-capita)2

�26.852 �3.643 33.070
(GDP per-capita)3

�26.993 �3.296 32.595
Shapley–Shubik index �5.079 �2.166 7.303
Budgetary period dummy 1.226 2.115 �3.346
Border region dummy 3.315 �0.054 �3.260
Employment �7.557 2.930 4.555
Industrial employment �9.352 1.913 7.344
Service employment �8.468 1.476 6.929
Population density �6.590 0.254 6.328
Observations 693 692 693

Median t-value 4.82
Mean t-value 9.40

Notes: The groups are generated according to the terciles of total EU transfers per GDP. t-Values

reported in boldface indicate significance at the 5% level. The median and mean t-values are calculated

on the basis of the t-statistics across all groups and covariates as reported in the table.

Fig. A1. Effects of total EU transfers accounting for infrastructure endowments and environmental hazards. Note: Observations with treatment levels in

the highest and lowest 5% are trimmed. The functions in the center of each graph are surrounded by their block-bootstrapped 90% confidence bands.
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Appendix B. Sensitivity with respect to the chosen number of treatment groups

In Section 3.2, we assigned the observations to four treatment groups that were generated according to the quartiles of
the distribution of EU transfer intensity in terms of regional GDP (see Table B3). In general, there is a trade-off between the
coarseness of the classification and the violation of the balancing property. The coarser the classification, the more likely
will the balancing property be violated (i.e., the less comparable are treated and control units), but the more observations
will have common support. On the contrary, the finer the classification, the less likely will the balancing property be
violated, but the less observations will have common support. Our results appear quite robust to the chosen number of
treatment groups.

Choosing a coarser classification than for the benchmark results with three treatment groups according to the terciles of
the treatment distribution amplifies the differences in covariates across groups compared to the classification with four
treatment groups. The average t-statistic in the balancing score tests increases from 7.79 to 9.4 (see Tables 4 and B1).
However, conditioning on the GPS still renders the differences across treatment groups insignificant as is obvious from
Table B2. Table B3 provides the distribution of observations across the cells underlying Table B2.

Choosing a finer classification than for the benchmark results with five treatment groups of approximately the same
size reduces the differences in covariates across treatment groups as can be seen from comparing Tables 4 and B4 and
Tables 6 and B5 (see Table B6 for the distribution of observations across the cells underlying Tables B4 and B5).



Table B4
Treatment groups and covariates (five groups).

Covariates and statistics Group 1 Group 2 Group 3 Group 4 Group 5

GDP per-capita �21.184 �11.046 �3.072 7.816 30.424
(GDP per-capita)2

�21.497 �10.874 �2.818 8.010 29.801
(GDP per-capita)3

�21.780 �10.682 �2.562 8.185 29.139
Shapley-Shubik index �8.055 0.591 �4.645 3.388 8.731
Budgetary period dummy 2.564 �1.396 3.337 �3.268 �1.230

Border region dummy 3.618 0.373 1.072 �0.831 �4.236
Employment �3.922 �5.476 0.793 3.781 4.815
Industrial employment �6.442 �5.373 �0.343 3.935 8.272
Service employment �4.079 �6.656 �0.026 2.878 7.925
Population density �6.761 �1.425 �0.638 2.287 6.528
Observations 415 417 415 415 416

Median t-value 4.16
Mean t-value 6.97

Notes: The groups are generated according to the quintiles of total EU transfers per GDP. t-Values reported in boldface indicate significance at the 5% level.

The median and mean t-values are calculated on the basis of the t-statistics across all groups and covariates as reported in the table.

Table B3
Cell size for comparison of treated and control units in the matrix of 10 blocks and 3 groups.

Block Group 1 Control 1 Group 2 Control 2 Group 3 Control 3

1 57 566 67 262 47 670

2 59 166 66 178 48 263

3 58 108 66 114 47 119

4 58 68 67 109 47 71

5 57 57 66 96 47 46

6 58 66 66 66 47 21

7 58 33 66 53 47 19

8 58 35 67 72 47 13

9 58 19 66 50 47 11

10 57 16 66 49 47 8

Notes: The groups are generated according to the terciles of EU transfers per GDP whereas the blocks are generated according to the deciles of the GPS

evaluated at the median treatment intensity of each group.

Table B2
Balance of covariates accounting for the GPS (three groups).

Covariates and statistics Group 1 Group 2 Group 3

GDP per-capita �1.390 �0.982 0.534

(GDP per-capita)2
�1.359 �0.960 0.527

(GDP per-capita)3
�1.329 �0.938 0.520

Shapley–Shubik index 1.229 �0.143 �0.871

Budgetary period dummy �0.470 0.319 �0.070

Border region dummy 0.394 �0 .597 1.195

Employment 0.224 0.794 �0.713

Industrial employment 0.264 0.786 �0.401

Service employment 0.046 0.711 �0.688

Population density 00.286 �0 0.439 �0.291

Observations 578 663 471

Median t-value 0.57

Mean t-value 0.65

Notes: The groups are generated according to the terciles of total EU transfers per GDP. Observations which do not

satisfy the common support condition are excluded from the respective groups. In order to control for the GPS

values we discretize them into deciles. t-Values reported in boldface indicate significance at the 5% level. The

median and mean t-values are calculated on the basis of the t-statistics across all groups and covariates as

reported in the table. See main text for details.
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The variation of the common support sample with respect to the number of treatment groups is only minor: while the
benchmark specification’s common support sample contains 1693 observations the specifications with three and five
treatment groups yield common support samples of 1712 and 1599 observations, respectively. Accordingly, the estimates



Table B6
Cell size for comparison of treated and control units in the matrix of 10 blocks and 5 groups.

Block Group 1 Control 1 Group 2 Control 2 Group 3 Control 3 Group 4 Control 4 Group 5 Control 5

1 26 670 35 407 39 377 37 408 23 849

2 27 180 35 162 39 170 39 234 22 199

3 26 117 35 135 39 128 38 167 22 137

4 26 106 35 106 39 100 37 97 21 50

5 26 66 35 80 39 109 38 42 22 49

6 26 79 35 79 39 74 38 61 23 14

7 25 36 35 66 39 83 38 49 22 33

8 27 44 35 73 39 62 38 46 21 17

9 25 20 35 55 39 48 38 73 23 13

10 26 20 34 87 39 58 37 44 22 17

Notes: The groups are generated according to the quintiles of EU transfers per GDP whereas the blocks are generated according to the deciles of the GPS

evaluated at the median treatment intensity of each group. See main text for details.

Table B5
Balance of covariates accounting for the GPS (five groups).

Covariates and statistics Group 1 Group 2 Group 3 Group 4 Group 5

GDP per-capita 0.533 �1.888 �1.598 �0.948 0.853

(GDP per-capita)2 0.532 �1.840 �1.594 �0.935 0.851

(GDP per-capita)3 0.530 �1.791 �1.590 �0.923 0.850

Shapley–Shubik index �1.343 1.768 �1.295 0.396 �0.160

Budgetary period dummy 0.584 �1.197 0.834 �1.094 0.402

Border region dummy 0.732 �0.033 �0.165 �0.003 1.040

Employment 1.290 �0.508 �0.082 0.148 0.756

Industrial employment 0.882 �0.105 �0.331 0.653 0.955

Service employment 1.310 �0.827 �0.049 �0.149 1.001

Population density 0.334 �0.441 �1.234 �0.402 1.168

Observations 260 349 390 378 221

Median t-value 0.84

Mean t-value 0.82

Notes: The groups are generated according to the quintiles of total EU transfers per GDP. Observations which do not satisfy the common support

condition are excluded from the respective groups. In order to control for the GPS values we discretize them into deciles. t-Values reported in boldface

indicate significance at the 5% level. The median and mean t-values are calculated on the basis of the t-statistics across all groups and covariates as

reported in the table. See main text for details.
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of the second-stage model which underlies the dose–response function and the treatment effect function estimates remain
almost unaffected.28
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