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a b s t r a c t

This paper illustrates that the generalized propensity score method can easily be applied with multiple
continuous endogenous treatment variables. Consistency proofs carry over straightforwardly to this
general case, and the approach is shown to work well in finite samples with various data-generating
processes and up to five continuous endogenous treatment variables.

© 2013 Published by Elsevier B.V.
1. Introduction

Imbens (2000), Lechner (2001), Hirano and Imbens (2004),
and Imai and van Dyk (2004) should be credited with an
invaluable generalization of the seminal propensity score method
of Rosenbaum and Rubin (1983) to the case of multivalued and,
in particular, continuous endogenous treatments. The idea is to
utilize the propensity score as a scalar-valued control function
which is based on observable characteristics in the data in order
to remove the endogeneity bias in average effects of endogenous
treatments on outcomes of interest. For instance, Hirano and
Imbens (2004) show that this works well with continuous
treatments when utilizing the residuals from an estimated
continuous-treatment-generating econometric model to generate
a generalized propensity score which assumes normality and is
used in a flexible (e.g., polynomial) functional form as a control
function in the outcome-generating model.

This short paper follows up on this idea. It shows that the
approach of Hirano and Imbens (2004) is just as applicable with
multiple correlated continuous endogenous treatments as it is
with single-treatment variables. We illustrate that consistency
proofs are straightforward and that the small-sample properties of
the estimator are similar between single-treatment and multiple-
treatment frameworks. The next section introduces the notation
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and outlines the approach for multiple treatments, with the large-
sample properties being relegated to the Appendix, and Section 3
summarizes the small-sample properties for three data-generating
processes and one to five endogenous treatments.

2. Generalized propensity scores for multiple treatments

We wish to nonparametrically estimate the average treatment
effect function (ATE) of M continuous endogenous treatments
which are indexed by m = 1, . . . ,M on outcome Yi of cross-
sectional units i = 1, . . . ,N . There are three treatment concepts.
First, denote the mth set of potential treatment levels by Tm ∈

[tm, tm], where tm and tm are the corresponding lower and upper
bounds, respectively. Second, denote particular levels of potential
treatment in the interval [tm, tm] by tm ∈ Tm. Finally, refer to
the actual treatment levels for unit i by Tmi, and the combinations
of potential and realized treatments in M dimensions by vectors
t = t1, . . . , tM and Ti = (T1i, . . . , TMi), respectively.

Postulate outcome Yi as a flexible function of Tmi as Yi(Ti) =

f (T1i, . . . , TMi) and of potential treatments as Yi(t)=Yi(t1, . . . , tM).
The latter may be referred to as the unit-level dose–response func-
tion, whose average across units i is the average dose–response
function,µ(t) ≡ E[Yi(t)]. Specify Tmi as a function of nonstochastic
regressor vector Xmi which may potentially be correlated with Yi:

Tmi = f (Xmi, δm) + εmi, (1)

where δm is an unknown parameter vector and εmi is a stochastic
term which is uncorrelated with both Xmi and Yi. Define the joint
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matrix of nonstochastic regressors (instruments) in the system by
Zi, which contains at leastX1i∪· · ·∪XMi andpossibly also interactive
terms of elements of the individual vectors Xmi, so that we may
formulate a reduced-form specification for allM treatments as

Tmi = f (Zi, γm)  
=Tmi

+νmi, (2)

where γm is an unknown parameter vector and νmi is a stochastic
term which is uncorrelated with both Zi and Yi.

For identification, we have to assume weak unconfoundedness
as stated in Rosenbaum and Rubin (1983) for the binary propensity
score and in Hirano and Imbens (2004) and Imai and van
Dyk (2004) for the generalized propensity score with a single
multivalued (continuous) treatment.

Assumption (Weak Unconfoundedness).

Yi(t) ⊥ T1i, . . . , TMi|Zi ∀t1 ∈ T1, . . . , tM ∈ Tm.

Hence, the potential outcome Yi(t) is conditionally independent
of treatment status Tm. The generalized propensity score in the
M-dimensional continuous treatment is specified as follows.

Definition (Generalized Propensity Score). Denote any possible
vector of covariates determining treatment by z and define the
M-variate conditional joint density of t1, . . . , tM given z as

g(t, z) = fTi|Zi(t|z).

Then, the generalized propensity score (GPS) is defined as

Gi = g(Ti, Zi), Zi ⊥ 1{Tmi = tm ∀m = 1, . . . ,M}|g(t, Zi).

Hence, the probability of Ti = (T1i, . . . , TMi) being equal to some
potential treatment combination t is independent of the covariates
in Zi once we condition on the GPS. Accordingly, the treatment
status is independent of the outcome conditional on the GPS once
the above assumption is met. For identification, this implies that,
underweakunconfoundedness, conditioning on (some function of)
the scalar-valued Gi instead of on (some function of) all elements
in Zi is sufficient to remove the selection bias in the unconditional
impact of all treatments on the outcome.

Let us denote theN×1GPS vector byG = (Gi), theN×M matrix
of demeaned treatments byT = (νmi), with νmi = Tmi−Tmi, where
Tmi is the (conditional) mean of Tmi, and the M × M symmetric
and positive definite variance–covariance matrix of treatments by
Σ = Cov[νm, νm′ ], where νm = (νmi) and νm′ = (νm′ i) denote two
N × 1 residual vectors for treatments m and m′. Then, G = (Gi),
and its estimated counterpartG = (Gi), based on the multivariate
normal, are given by

G =
1

(2π)M/2|Σ |1/2
exp


−

1
2
T ′Σ−1T

,

G =
1

(2π)M/2|Σ |1/2
exp


−

1
2
T ′Σ−1T

.

(3)

The estimated G = (Gi) can then be used in a flexible control
function to reduce (if not remove) the endogeneity bias of the
estimated average treatment effect in the model determining
outcome Yi. The Appendix proves the consistency of this approach,
and the next section illustrates its small-sample performance.

3. Monte Carlo set-up and simulation results

Consider the treatment-generating process

Tmi = Tmi + νmi = Xmiβm + νmi,

where Xmi ∼ i.i.d.N(0, 1) and βm = 5 for eachm = 1, . . . ,M , and

νi = [ν1i, . . . , νMi]
′
∼ i.i.d.N(0, Σ),
where all diagonal elements of Σ are assumed to be unity and
all off-diagonal elements are assumed to be 0.25, for simplicity.
Let us specify Li = [T1i, . . . , TMi, T 2

1i, . . . , T
2
Mi, T

3
1i, . . . , T

3
Mi],Hi =

[X1i, . . . , XMi, X2
1i, . . . , X

2
Mi], Ξi = [T1iX1i, . . . , TMiXMi], and Γi =

[G1
i , . . . ,G

3
i ,GiT1i, . . . ,G3

i T
3
Mi] to formulate three considered pro-

cesses for the outcome:

Y A
i = Liα1 + Γiα2 + ui, (4)

Y B
i = Liα1 + Hiα3 + ui, (5)

Y C
i = Liα1 + Hiα3 + Ξiα4 + ui, (6)

where ui ∼ i.i.d.N(0, s) and s scales the variance of ui. We set all
elements in the vectors αk for k = 1, . . . , 4 to unity. In the coun-
terfactual situation, we raise T1i to T c

1i = T1i + 0.01 at Zi without
loss of generality. This changes ν1i and Gi and, in turn, it changes
Y j
i to Y jc

i for j ∈ {A, B, C}. Let us denote the true average treatment
effect of such a change in T1i on outcome Y j

i by ATE j
1 = Y jc

i /Y j
i − 1.

We aim at estimating the latter by ordinary least squares (OLS), as-
suming linearity and mean independence (ATE j

1OLS = α1,1) and,
alternatively, by the GPS estimator (ATE j

1GPS). Specifically, after
defining Υi = [G1

i , . . . ,
G3

i ,
GiT1i, . . . ,G5

i T
5
1i],νmi = Tmi −Tmi, and

Zi = [Xi1, . . . , XiM ], the GPS-based estimates are obtained as fol-
lows:1

First stage:Tmi = Ziϑm; Second stage:Y j
i = [Li, Υi]ϕj, (7)

where ϑm and ϕj are estimated conformable parameter vectors.
Notice that there are two approximation errors in (7). First, (7) ig-
nores the exclusion restrictions (that Tmi depends on Xmi only) and,
second, the functional form in which Y j

i depends on T1i in (7) is dif-
ferent from the true processes in (4)–(6).

We consider cases of M ∈ {1, . . . , 5}, of N ∈ [1, 200; 2, 400;
4, 800] observations in the data, and of two configurations for
the scaling factor of the variances in the second-stage models,
s ∈ {1, 10}. Altogether, this gives 5 · 3 · 2 = 30 experiments
for which we do 2000 Monte Carlo runs each. The results for
the average bias and root mean squared error (RMSE) across all
runs and observations i within an experiment are summarized in
Table 1.

Table 1 suggests the following conclusions. First of all, OLS
assuming ATE linearity is always dramatically biased and exhibits a
large RMSE. This is not surprising, given the assumedhighdegree of
ATE nonlinearity and endogeneity in the data-generating process,
both of which are ignored by OLS across all Models A–C. Obviously,
bias as well as RMSE is always higher with more noise in the
outcome process, i.e., for s = 10 compared to s = 1. Moreover,
OLS tends to perform weakest for Model C due to ignoring the
interactive terms in Ξ .

Second, among Models A–C, the GPS approach works relatively
best for Model A. The reason is simply that the control function
is perfectly specified in expected value in that model. Hence, the
only error accrues to pure stochastics. Clearly, this is not what one
will encounter empirically. InModels B and C there is a polynomial
approximation error about the control function, which leads to
higher bias than in Model A.2 Third, as expected, the bias declines
as N gets bigger (to the extent that there is small sample bias on
top of functional form bias of the control function). Naturally, the
RMSE declines asN increases. Moreover, the RMSE increases as the

1 Alternatively, we considered approximations, where Υi was based on a (less
flexible) form with P = 3 and a (more flexible) form with P = 10. The results
are available from the authors upon request. Naturally, the bias declines with the
degree of flexibility of the control function.
2 Empirically, this could be further reduced by a search algorithm about the

functional form of the control function, e.g., based on information criteria.
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Table 1
Bias and RMSE of GPS and OLS estimates.

D N S Model A Model B Model C
GPS OLS GPS OLS GPS OLS
BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

1 1200 1 0.32 0.84 1061.93 66,003.40 2.22 2.27 1180.60 80,859.30 2.96 118.51 1632.42 1126,205.10
2 1200 1 −0.76 38.01 727.73 5923,947.10 2.51 1.80 1198.96 83,205.78 3.13 104.24 1657.06 1158,416.30
3 1200 1 −0.52 471.16 1447.09 949,127.37 2.55 1.80 1201.49 83,530.59 3.25 97.16 1661.79 1164,516.20
4 1200 1 −0.01 1.11 1163.01 78,509.59 2.63 2.28 1173.72 79,947.72 3.70 142.27 1629.48 1149,227.20
5 1200 1 0.03 4.38 1148.43 76,809.24 2.84 6.97 1152.35 77,253.58 4.68 169.06 1599.23 1109,592.50

1 2400 1 0.34 0.57 1229.43 82,886.50 3.03 1.37 1372.02 101,259.94 2.36 8.54 1551.65 160,264.34
2 2400 1 0.50 55.52 1554.75 2909,530.70 2.95 1.73 1359.93 99,567.42 2.18 7.14 1538.31 157,583.94
3 2400 1 −0.27 118.74 1980.93 8562,888.70 2.75 2.24 1398.09 104,930.25 1.22 9.51 1580.65 165,899.64
4 2400 1 0.02 7.41 1417.16 109,256.95 2.68 2.74 1415.73 107,451.62 1.47 9.05 1600.05 169,782.80
5 2400 1 0.02 3.17 1411.42 107,012.24 2.73 3.38 1413.71 107,162.57 1.09 14.60 1597.86 169,447.61

1 4800 1 −0.42 0.38 1062.58 61,498.69 2.78 0.86 1192.37 78,326.23 2.18 4.02 1309.08 109,252.18
2 4800 1 −0.12 1.41 1100.44 301,442.48 2.73 1.03 1195.91 78,767.47 1.64 7.53 1312.87 109,883.73
3 4800 1 0.04 2.64 1177.15 177,849.26 2.74 1.12 1200.28 79,305.49 1.50 6.86 1317.54 110,620.50
4 4800 1 0.00 0.43 1221.42 82,709.64 2.71 0.95 1225.41 82,456.11 1.19 7.83 1344.86 114,992.79
5 4800 1 0.01 0.19 1236.29 83,800.28 2.65 0.97 1240.25 84,328.18 1.01 7.62 1361.77 117,674.80

1 1200 10 0.49 77.73 1061.97 66,007.16 2.40 99.43 1180.64 80,864.03 3.04 317.40 1632.47 1126,270.30
2 1200 10 −0.80 3505.90 727.75 5924,283.60 2.48 76.60 1199.00 83,210.57 3.04 223.99 1657.11 1158,482.30
3 1200 10 −0.63 46,784.19 1447.14 949,182.93 2.67 87.85 1201.52 83,535.53 3.31 238.11 1661.84 1164,584.30
4 1200 10 0.10 111.12 1163.05 78,514.32 2.75 93.22 1173.76 79,952.53 3.78 269.81 1629.53 1149,295.30
5 1200 10 0.28 437.91 1148.47 76,813.92 3.07 404.52 1152.39 77,258.28 4.92 593.22 1599.28 1109,659.10

1 2400 10 0.38 40.42 1229.43 82,886.49 3.05 50.59 1372.02 101,259.94 2.40 89.26 1551.64 160,261.96
2 2400 10 0.44 5391.51 1554.75 2909,532.30 2.96 94.93 1359.93 99,567.47 2.20 169.38 1538.30 157,581.68
3 2400 10 −0.15 11,728.59 1980.93 8562,893.30 2.79 156.91 1398.09 104,930.31 1.28 295.70 1580.64 165,897.33
4 2400 10 0.16 739.12 1417.17 109,257.14 2.77 208.50 1415.73 107,451.80 1.57 394.05 1600.05 169,783.09
5 2400 10 0.12 317.35 1411.43 107,012.36 2.82 258.82 1413.71 107,162.69 1.22 492.33 1597.86 169,447.80

1 4800 10 −0.40 18.29 1062.58 61,498.96 2.80 24.76 1192.37 78,326.60 2.21 37.18 1309.07 109,250.79
2 4800 10 −0.20 131.74 1100.44 301,443.66 2.73 23.93 1195.91 78,767.78 1.64 34.70 1312.86 109,882.26
3 4800 10 0.01 260.78 1177.15 177,850.00 2.74 33.73 1200.28 79,305.82 1.50 44.81 1317.53 110,619.05
4 4800 10 −0.01 42.85 1221.42 82,710.00 2.70 21.80 1225.41 82,456.48 1.18 33.88 1344.86 114,993.30
5 4800 10 0.01 18.80 1236.30 83,800.69 2.66 20.15 1240.26 84,328.58 1.02 31.38 1361.78 117,675.37
signal-to-noise ratio declines in the outcome equation with much
less impact on the bias.

Finally, the extent of bias and RMSE is largely invariant to an
increase in M . Hence, the GPS approach works just as well with
multiple treatments as with a single treatment.

Appendix

For ease of notation, we suppress subscripts for individuals in
this section.

Theorem 1. If the assignment to treatment is weakly unconfounded
given pretreatment covariates Z, then, for every potential multiple
treatment level t,

fT (t|g(t, Z), Y (t)) = fT (t|g(t, Z)) . (8)

Proof 1. Denote the conditional probability distribution for Z by
FZ (z|·) and the conditional densities of T = (T1, . . . , TM) by fT (t|·).
Weak unconfoundedness means that

fT (t|z, g(t, Z), Y (t)) = fT (t|z) = g(t, z).

This is the case, since fT (t|Z, g(t, Z), Y (t)) = fT (t|Z, g(t, Z)) =

fT (t|g(t, Z)) = g(t, Z), so (8) holds underweak unconfoundedness
whereby treatments and outcomes are mutually independent,
conditional on the GPS for multiple treatments. �

Theorem 2. Denote the conditional expectation of the outcome by
η(t, g) and the average dose response function by µ(t). Referring to
element-wise equality Tm = tm for all m = 1, . . . ,M by T = t, under
weak unconfoundedness, we have (a) η(t, g) = E[Y (t)|g(t, Z) =

g] = E[Y |T = t,G = g] and (b) µ(t) = E[η(t, g(t, Z))].
Proof 2. Denote the conditional density of Y (t) = y conditional
on T = t and g(t, Z) = g by fY (t) (y|t, g). Using Bayes’ rule and
Theorem 1, we obtain

fY (t) (y|t, g) =
fT (t|Y (t) = y, g(t, Z) = g) fY (t) (y|g)

fT (t|g(t, Z) = g)
= fY (t) (y|g) .

With E [Y (t)|T = t, g(t, Z) = g] = E [Y (t)|g(t, Z)],

E[Y |T = t,G = g] = E[Y (t)|T = t, g(T , Z) = g]
= E[Y (t)|g(t, Z) = g] = η(t, g), (9)

which proves Part (a). Estimating E[Y |T = t,G = g] yields the
parameters needed for calculating the dose response function. Part
(b) follows from (9) together with the law of iterated expectations:

E[η(t, g(t, Z))] = E[E[Y (t)|g(t, Z) = g]] = E[Y (t)]. �
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